BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29465414)

  • 21. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging-a Monte Carlo study.
    Larsson A; Ljungberg M; Mo SJ; Riklund K; Johansson L
    Phys Med Biol; 2006 Nov; 51(22):5753-67. PubMed ID: 17068363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of scatter correction on D2 receptor occupancy measurements using 123I-IBZM SPECT: comparison to 11C-Raclopride PET.
    Bullich S; Cot A; Gallego J; Gunn RN; Suárez M; Pavía J; Ros D; Laruelle M; Catafau AM
    Neuroimage; 2010 May; 50(4):1511-8. PubMed ID: 20083205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF).
    Staelens S; de Wit T; Beekman F
    Phys Med Biol; 2007 Jun; 52(11):3027-43. PubMed ID: 17505087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A modified TEW approach to scatter correction for In-111 and Tc-99m dual-isotope small-animal SPECT.
    Prior P; Timmins R; Petryk J; Strydhorst J; Duan Y; Wei L; Glenn Wells R
    Med Phys; 2016 Oct; 43(10):5503. PubMed ID: 27782731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine.
    Asgari A; Ashoor M; Sohrabpour M; Shokrani P; Rezaei A
    Ann Nucl Med; 2015 May; 29(4):375-83. PubMed ID: 25613356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitation of tumor uptake with molecular breast imaging.
    Bache ST; Kappadath SC
    Med Phys; 2017 Sep; 44(9):4593-4607. PubMed ID: 28600857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-window scatter correction and energy window setting in cerebral blood flow SPECT: a Monte Carlo study.
    Gustafsson A; Arlig A; Jacobsson L; Ljungberg M; Wikkelsö C
    Phys Med Biol; 2000 Nov; 45(11):3431-40. PubMed ID: 11098915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation.
    Cot A; Sempau J; Pareto D; Bullich S; Pavía J; Calviño F; Ros D
    Phys Med Biol; 2004 Jul; 49(14):3125-36. PubMed ID: 15357186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction.
    Merlin T; Visvikis D; Fernandez P; Lamare F
    Med Phys; 2015 Feb; 42(2):804-19. PubMed ID: 25652494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scatter correction by two-window method standardizes cardiac I-123 MIBG uptake in various gamma camera systems.
    Kobayashi H; Momose M; Kanaya S; Kondo C; Kusakabe K; Mitsuhashi N
    Ann Nucl Med; 2003 Jun; 17(4):309-13. PubMed ID: 12932115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implications of dual-energy-window (DEW) scatter correction inaccuracies for 111In quantitative geometric mean imaging.
    Choi CW; Barker WC; Buvat I; Carrasquillo JA; Bacharach SL
    Nucl Med Commun; 1997 Jan; 18(1):79-86. PubMed ID: 9061707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of scatter correction on planar and tomographic semiquantitative
    Papanastasiou E; Moralidis E; Siountas A
    Hell J Nucl Med; 2017; 20(2):154-159. PubMed ID: 28777833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of quantitative 123I and 131I SPECT with Monte Carlo-based down-scatter compensation.
    Kangasmaa TS; Constable C; Sohlberg AO
    Nucl Med Commun; 2018 Dec; 39(12):1097-1102. PubMed ID: 30222722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A postprocessing method for compensation of scatter and collimator blurring in SPECT: a proof-of-concept study.
    Yan Y; Zeng GL
    J Nucl Med Technol; 2009 Jun; 37(2):83-90. PubMed ID: 19447851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comparison of scatter and attenuation correction methods in single photon emission CT--simulation study].
    Ogawa K; Ono T; Shinohara H; Nishimura T
    Kaku Igaku; 2000 Mar; 37(2):131-42. PubMed ID: 10783573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A revised monitor source method for practical deadtime count loss compensation in clinical planar and SPECT studies.
    Siman W; Silosky M; Kappadath SC
    Phys Med Biol; 2015 Feb; 60(3):1199-216. PubMed ID: 25591740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.