These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29465417)

  • 1. Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor.
    Zhu Q; Yuan X; Zhu Y; Ni J; Zhang X; Yang Z
    Nanotechnology; 2018 May; 29(19):195405. PubMed ID: 29465417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors.
    Yang B; Hao C; Wen F; Wang B; Mu C; Xiang J; Li L; Xu B; Zhao Z; Liu Z; Tian Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44478-44484. PubMed ID: 29192760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easy to assemble PDMS/CNTs/PANI flexible supercapacitor with high energy-to-power density.
    Balboni RDC; Maron GK; Masteghin MG; Tas MO; Rodrigues LS; Gehrke V; Alano JH; Andreazza R; Carreño NLV; Silva SRP
    Nanoscale; 2022 Feb; 14(6):2266-2276. PubMed ID: 35080562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic enhancement on flexible solid-state supercapacitor based on redox-active Fe
    Chen S; Yang M; Zhang J; Cheng H; Qin H; Yao S; Wang M; Zhang X; Yang Z
    Nanotechnology; 2022 Jul; 33(39):. PubMed ID: 35700715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors.
    Parayangattil Jyothibasu J; Chen MZ; Lee RH
    ACS Omega; 2020 Mar; 5(12):6441-6451. PubMed ID: 32258879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-Areal-Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbon-Nanotube Arrays.
    Zhou Y; Wang X; Acauan L; Kalfon-Cohen E; Ni X; Stein Y; Gleason KK; Wardle BL
    Adv Mater; 2019 Jul; 31(30):e1901916. PubMed ID: 31157472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors.
    Zheng Z; Retana M; Hu X; Luna R; Ikuhara YH; Zhou W
    ACS Appl Mater Interfaces; 2017 May; 9(20):16986-16994. PubMed ID: 28463481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance.
    Wang Y; Xiao J; Zhang T; Ouyang L; Yuan S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45670-45678. PubMed ID: 34538050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of hollow nanorod electrodes based on RuO
    Wang Q; Liang X; Ma Y; Zhang D
    Dalton Trans; 2018 Jun; 47(23):7747-7753. PubMed ID: 29808194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-Ordered Oxygen-Deficient CoMoO
    Chi K; Zhang Z; Lv Q; Xie C; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6044-6053. PubMed ID: 28102070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability.
    Avasthi P; Arya N; Singh M; Balakrishnan V
    Nanotechnology; 2020 Oct; 31(43):435402. PubMed ID: 32619994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
    Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L
    Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.