BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29465785)

  • 1. The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water".
    Lipshutz BH; Ghorai S; Cortes-Clerget M
    Chemistry; 2018 May; 24(26):6672-6695. PubMed ID: 29465785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis.
    Cortes-Clerget M; Akporji N; Zhou J; Gao F; Guo P; Parmentier M; Gallou F; Berthon JY; Lipshutz BH
    Nat Commun; 2019 May; 10(1):2169. PubMed ID: 31092815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitioning organic synthesis from organic solvents to water. What's
    Lipshutz BH; Ghorai S
    Green Chem; 2014 Aug; 16(8):3660-3679. PubMed ID: 25170307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Reactivity of Micellar Nanoreactors by Precise Adjustments of the Amphiphile and Substrate Hydrophobicity.
    Tevet S; Wagle SS; Slor G; Amir RJ
    Macromolecules; 2021 Dec; 54(24):11419-11426. PubMed ID: 34987270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous micellar technology: an alternative beyond organic solvents.
    Hedouin G; Ogulu D; Kaur G; Handa S
    Chem Commun (Camb); 2023 Mar; 59(20):2842-2853. PubMed ID: 36753294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.
    Xie JH; Zhou QL
    Acc Chem Res; 2008 May; 41(5):581-93. PubMed ID: 18311931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of hydrophilic groups in aqueous organic reactions.
    Itami K; Yoshida J
    Chem Rec; 2002; 2(4):213-24. PubMed ID: 12203904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoreactors for green catalysis.
    De Martino MT; Abdelmohsen LKEA; Rutjes FPJT; van Hest JCM
    Beilstein J Org Chem; 2018; 14():716-733. PubMed ID: 29719570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coolade. A Low-Foaming Surfactant for Organic Synthesis in Water.
    Lee NR; Cortes-Clerget M; Wood AB; Lippincott DJ; Pang H; Moghadam FA; Gallou F; Lipshutz BH
    ChemSusChem; 2019 Jul; 12(13):3159-3165. PubMed ID: 30889298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.
    Cecchini MM; Charnay C; De Angelis F; Lamaty F; Martinez J; Colacino E
    ChemSusChem; 2014 Jan; 7(1):45-65. PubMed ID: 24323519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions in micellar systems.
    Dwars T; Paetzold E; Oehme G
    Angew Chem Int Ed Engl; 2005 Nov; 44(44):7174-99. PubMed ID: 16276555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar catalysis using a photochromic surfactant: application to the Pd-catalyzed Tsuji-Trost reaction in water.
    Billamboz M; Mangin F; Drillaud N; Chevrin-Villette C; Banaszak-Léonard E; Len C
    J Org Chem; 2014 Jan; 79(2):493-500. PubMed ID: 24295431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green asymmetric synthesis: β-amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles.
    Pinaka A; Vougioukalakis GC; Dimotikali D; Yannakopoulou E; Chankvetadze B; Papadopoulos K
    Chirality; 2013 Feb; 25(2):119-25. PubMed ID: 23192785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric architecture as a tool for controlling the reactivity of palladium(II) loaded nanoreactors.
    Wagle SS; Rathee P; Vippala K; Tevet S; Gordin A; Dobrovetsky R; Amir RJ
    Nanoscale; 2023 Sep; 15(37):15396-15404. PubMed ID: 37701949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell nanoreactors for efficient aqueous biphasic catalysis.
    Zhang X; Cardozo AF; Chen S; Zhang W; Julcour C; Lansalot M; Blanco JF; Gayet F; Delmas H; Charleux B; Manoury E; D'Agosto F; Poli R
    Chemistry; 2014 Nov; 20(47):15505-17. PubMed ID: 25284685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities.
    Sperger T; Sanhueza IA; Schoenebeck F
    Acc Chem Res; 2016 Jun; 49(6):1311-9. PubMed ID: 27171796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of reactions catalyzed by enzymes in solutions of surfactants.
    Biasutti MA; Abuin EB; Silber JJ; Correa NM; Lissi EA
    Adv Colloid Interface Sci; 2008 Jan; 136(1-2):1-24. PubMed ID: 17706582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.