These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 29465951)
41. Spatial variability of sulfate reduction in a shallow aquifer. Musslewhite CL; Swift D; Gilpen J; McInerney MJ Environ Microbiol; 2007 Nov; 9(11):2810-9. PubMed ID: 17922764 [TBL] [Abstract][Full Text] [Related]
42. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631 [TBL] [Abstract][Full Text] [Related]
43. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Zhang Z; Lo IM Appl Microbiol Biotechnol; 2015 Jul; 99(13):5683-96. PubMed ID: 25661814 [TBL] [Abstract][Full Text] [Related]
44. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Winfrey MR; Zeikus JG Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807 [TBL] [Abstract][Full Text] [Related]
45. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Mountfort DO; Kaspar HF; Downes M; Asher RA Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008 [TBL] [Abstract][Full Text] [Related]
46. Microbial community structure in deep natural gas-bearing aquifers subjected to sulfate-containing fluid injection. Katayama T; Yoshioka H; Yamanaka T; Takeuchi M; Muramoto Y; Usami J; Ikeda H; Sakata S J Biosci Bioeng; 2019 Jan; 127(1):45-51. PubMed ID: 30082219 [TBL] [Abstract][Full Text] [Related]
47. Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Oristano (Sardinia, Italy). Como S; Magni P; Casu D; Floris A; Giordani G; Natale S; Fenzi GA; Signa G; De Falco G Mar Pollut Bull; 2007 Jun; 54(6):733-44. PubMed ID: 17335856 [TBL] [Abstract][Full Text] [Related]
48. The effect of sulfate and nitrate on methane formation in a freshwater sediment. Scholten JC; Stams AJ Antonie Van Leeuwenhoek; 1995 Nov; 68(4):309-15. PubMed ID: 8821786 [TBL] [Abstract][Full Text] [Related]
49. Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan. Suzuki D; Ueki A; Amaishi A; Ueki K J Gen Appl Microbiol; 2007 Apr; 53(2):119-32. PubMed ID: 17575452 [TBL] [Abstract][Full Text] [Related]
50. Distribution of the bioavailable and total content of copper and lead, in river sediments of the Jamapa-Atoyac fluvial system, Mexico. Cabral-Tena RA; Córdova A; López-Galindo F; Morales-Aranda AA; Reyes-Mata A; Soler-Aburto A; Horta-Puga G Environ Monit Assess; 2019 Mar; 191(4):214. PubMed ID: 30854617 [TBL] [Abstract][Full Text] [Related]
51. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A; Brüchert V; Jørgensen BB Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778 [TBL] [Abstract][Full Text] [Related]
52. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity. Cadena S; García-Maldonado JQ; López-Lozano NE; Cervantes FJ Microb Ecol; 2018 May; 75(4):930-940. PubMed ID: 29116347 [TBL] [Abstract][Full Text] [Related]
53. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment. Vandieken V; Finke N; Thamdrup B FEMS Microbiol Ecol; 2014 Mar; 87(3):733-45. PubMed ID: 24266405 [TBL] [Abstract][Full Text] [Related]
54. Microbial methane cycling in sediments of Arctic thermokarst lagoons. Yang S; Anthony SE; Jenrich M; In 't Zandt MH; Strauss J; Overduin PP; Grosse G; Angelopoulos M; Biskaborn BK; Grigoriev MN; Wagner D; Knoblauch C; Jaeschke A; Rethemeyer J; Kallmeyer J; Liebner S Glob Chang Biol; 2023 May; 29(10):2714-2731. PubMed ID: 36811358 [TBL] [Abstract][Full Text] [Related]
55. Evidence for aceticlastic methanogenesis in the presence of sulfate in a gas condensate-contaminated aquifer. Struchtemeyer CG; Elshahed MS; Duncan KE; McInerney MJ Appl Environ Microbiol; 2005 Sep; 71(9):5348-53. PubMed ID: 16151124 [TBL] [Abstract][Full Text] [Related]
56. Metabolic flexibility of sulfate-reducing bacteria. Plugge CM; Zhang W; Scholten JC; Stams AJ Front Microbiol; 2011; 2():81. PubMed ID: 21734907 [TBL] [Abstract][Full Text] [Related]
57. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Foti M; Sorokin DY; Lomans B; Mussman M; Zacharova EE; Pimenov NV; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Apr; 73(7):2093-100. PubMed ID: 17308191 [TBL] [Abstract][Full Text] [Related]
59. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447 [TBL] [Abstract][Full Text] [Related]
60. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]