These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29466613)

  • 1. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.
    Maier M; Radtke CP; Hubbuch J; Niemeyer CM; Rabe KS
    Angew Chem Int Ed Engl; 2018 May; 57(19):5539-5543. PubMed ID: 29466613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor.
    Croci F; Vilím J; Adamopoulou T; Tseliou V; Schoenmakers PJ; Knaus T; Mutti FG
    Chembiochem; 2022 Nov; 23(22):e202200549. PubMed ID: 36173971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing: An Emerging Technology for Biocatalyst Immobilization.
    Pose-Boirazian T; Martínez-Costas J; Eibes G
    Macromol Biosci; 2022 Sep; 22(9):e2200110. PubMed ID: 35579179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene.
    Peng M; Mittmann E; Wenger L; Hubbuch J; Engqvist MKM; Niemeyer CM; Rabe KS
    Chemistry; 2019 Dec; 25(70):15998-16001. PubMed ID: 31618489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis.
    Schmieg B; Döbber J; Kirschhöfer F; Pohl M; Franzreb M
    Front Bioeng Biotechnol; 2018; 6():211. PubMed ID: 30693280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Demonstration of thermostable enzymes in thermophilic micro-organisms of hydrothermal origin].
    Ladrat C; Cornec L; Alayse-Danet AM; Barbier G
    C R Acad Sci III; 1995 Apr; 318(4):423-9. PubMed ID: 7648355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a novel thermostable Zn
    Loderer C; Wagner D; Morgenstern F; Spieß A; Ansorge-Schumacher MB
    J Appl Microbiol; 2018 Feb; 124(2):480-490. PubMed ID: 29224243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable enzymes as biocatalysts in the biofuel industry.
    Yeoman CJ; Han Y; Dodd D; Schroeder CM; Mackie RI; Cann IK
    Adv Appl Microbiol; 2010; 70():1-55. PubMed ID: 20359453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution.
    Li G; Maria-Solano MA; Romero-Rivera A; Osuna S; Reetz MT
    Chem Commun (Camb); 2017 Aug; 53(68):9454-9457. PubMed ID: 28795696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimerization of an Alcohol Dehydrogenase by Fusion to a Designed Self-Assembling Protein Results in Enhanced Bioelectrocatalytic Operational Stability.
    Bulutoglu B; Macazo FC; Bale J; King N; Baker D; Minteer SD; Banta S
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20022-20028. PubMed ID: 31066271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of agarose- and agar-based bioinks for extrusion-based bioprinting of enzymatically active hydrogels.
    Wenger L; Radtke CP; Gerisch E; Kollmann M; Niemeyer CM; Rabe KS; Hubbuch J
    Front Bioeng Biotechnol; 2022; 10():928878. PubMed ID: 36479432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets.
    Okwuosa TC; Stefaniak D; Arafat B; Isreb A; Wan KW; Alhnan MA
    Pharm Res; 2016 Nov; 33(11):2704-12. PubMed ID: 27506424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in 3D Gel Printing for Enzyme Immobilization.
    Shen J; Zhang S; Fang X; Salmon S
    Gels; 2022 Jul; 8(8):. PubMed ID: 35892719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Soluble Expression and Catalytic Activity of a Thermostable Esterase Using a High-Throughput Screening System Based on a Split-GFP Assembly.
    Mo HM; Xu Y; Yu XW
    J Agric Food Chem; 2018 Dec; 66(48):12756-12764. PubMed ID: 30411620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity and specificity studies of the new thermostable esterase EstDZ2.
    Myrtollari K; Katsoulakis N; Zarafeta D; Pavlidis IV; Skretas G; Smonou I
    Bioorg Chem; 2020 Nov; 104():104214. PubMed ID: 32927128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and application of chemical-resistant polyurethane-based enzyme and whole cell compartments.
    Uhrich D; Jang HY; Park JB; von Langermann J
    J Biotechnol; 2019 Jan; 289():31-38. PubMed ID: 30439386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Low-Resolution Structure of an Extremely Thermostable Esterase of Potential Biotechnological Interest from Pyrococcus furiosus.
    Mandelli F; Gonçalves TA; Gandin CA; Oliveira AC; Oliveira Neto M; Squina FM
    Mol Biotechnol; 2016 Nov; 58(11):757-766. PubMed ID: 27665110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.