BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29466740)

  • 1. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats.
    Mosbach V; Poggi L; Viterbo D; Charpentier M; Richard GF
    Cell Rep; 2018 Feb; 22(8):2146-2159. PubMed ID: 29466740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy.
    Mosbach V; Poggi L; Richard GF
    Curr Genet; 2019 Feb; 65(1):17-28. PubMed ID: 29974202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast.
    Richard GF; Viterbo D; Khanna V; Mosbach V; Castelain L; Dujon B
    PLoS One; 2014; 9(4):e95611. PubMed ID: 24748175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex.
    Richard GF; Goellner GM; McMurray CT; Haber JE
    EMBO J; 2000 May; 19(10):2381-90. PubMed ID: 10811629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.
    Sundararajan R; Freudenreich CH
    PLoS Genet; 2011 Mar; 7(3):e1001339. PubMed ID: 21437275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of break-induced replication in large-scale expansions of (CAG)
    Kim JC; Harris ST; Dinter T; Shah KA; Mirkin SM
    Nat Struct Mol Biol; 2017 Jan; 24(1):55-60. PubMed ID: 27918542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Trinucleotide Repeat Stability by Integration at a Chromosomal Ectopic Site.
    Gadgil RY; Rider SD; Lewis T; Barthelemy J; Leffak M
    Methods Mol Biol; 2020; 2056():121-136. PubMed ID: 31586345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.
    Zhu Z; Chung WH; Shim EY; Lee SE; Ira G
    Cell; 2008 Sep; 134(6):981-94. PubMed ID: 18805091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats.
    Richard GF; Dujon B; Haber JE
    Mol Gen Genet; 1999 Jun; 261(4-5):871-82. PubMed ID: 10394925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast.
    Fabre E; Dujon B; Richard GF
    Nucleic Acids Res; 2002 Aug; 30(16):3540-7. PubMed ID: 12177295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat.
    Blackwood JK; Okely EA; Zahra R; Eykelenboom JK; Leach DR
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22582-6. PubMed ID: 21149728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase.
    Cinesi C; Aeschbach L; Yang B; Dion V
    Nat Commun; 2016 Nov; 7():13272. PubMed ID: 27827362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast.
    Jankowski C; Nasar F; Nag DK
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2134-9. PubMed ID: 10681451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.