These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 2946687)
1. Selective inhibition by ionophore A23187 of the enzyme isomerization in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase. Hara H; Kanazawa T J Biol Chem; 1986 Dec; 261(35):16584-90. PubMed ID: 2946687 [TBL] [Abstract][Full Text] [Related]
2. Selective inhibition by ionophore A23187 of the enzyme isomerization in the catalytic cycle of Na+, K+ -ATPase. Hara H; Ohmiya H; Kanazawa T J Biol Chem; 1988 Mar; 263(7):3183-7. PubMed ID: 2830272 [TBL] [Abstract][Full Text] [Related]
3. Selective inhibition by lasalocid of hydrolysis of the ADP-insensitive phosphoenzyme in the catalytic cycle of sarcoplasmic reticulum Ca2(+)-ATPase. Kawashima T; Hara H; Kanazawa T J Biol Chem; 1990 Jul; 265(19):10993-9. PubMed ID: 2141607 [TBL] [Abstract][Full Text] [Related]
4. Reduction of disulfide bonds in sarcoplasmic reticulum Ca(2+)-ATPase by dithiothreitol causes inhibition of phosphoenzyme isomerization in catalytic cycle. This reduction requires binding of both purine nucleotide and Ca2+ to enzyme. Daiho T; Kanazawa T J Biol Chem; 1994 Apr; 269(15):11060-4. PubMed ID: 8157632 [TBL] [Abstract][Full Text] [Related]
5. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. Yamada S; Ikemoto N J Biol Chem; 1980 Apr; 255(7):3108-19. PubMed ID: 6444634 [TBL] [Abstract][Full Text] [Related]
6. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Fujimori T; Jencks WP J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527 [TBL] [Abstract][Full Text] [Related]
7. Conformational changes in the vicinity of the N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to the specific thiol of sarcoplasmic reticulum Ca2+-ATPase throughout the catalytic cycle. Obara M; Suzuki H; Kanazawa T J Biol Chem; 1988 Mar; 263(8):3690-7. PubMed ID: 2964442 [TBL] [Abstract][Full Text] [Related]
8. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide. Suzuki H; Kanazawa T Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823 [TBL] [Abstract][Full Text] [Related]
9. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Froehlich JP; Heller PF Biochemistry; 1985 Jan; 24(1):126-36. PubMed ID: 3158340 [TBL] [Abstract][Full Text] [Related]
10. The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of calcium. Carvalho-Alves PC; Scofano HM J Biol Chem; 1987 May; 262(14):6610-4. PubMed ID: 2952654 [TBL] [Abstract][Full Text] [Related]
11. Reaction mechanism of (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. I. Phosphoenzyme with bound Ca2+ which is exposed to the external medium. Takakuwa Y; Kanazawa T J Biol Chem; 1981 Mar; 256(6):2691-5. PubMed ID: 6110658 [TBL] [Abstract][Full Text] [Related]
12. Changes in affinity for calcium ions with the formation of two kinds of phosphoenzyme in the Ca2+,Mg2+-dependent ATPase of sarcoplasmic reticulum. Nakamura Y; Tonomura Y J Biochem; 1982 Feb; 91(2):449-61. PubMed ID: 6121794 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change. Hanel AM; Jencks WP Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081 [TBL] [Abstract][Full Text] [Related]
14. Inhibition by A23187 of conformational changes involved in the Ca(2+)-induced activation of sarcoplasmic reticulum Ca(2+)-ATPase. Ohmiya H; Kanazawa T J Biochem; 1991 May; 109(5):751-7. PubMed ID: 1833385 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of hydrolysis of phosphorylated Ca2+,Mg2+-ATPase of the sarcoplasmic reticulum by Ca2+ inside and outside the vesicles. Daiho T; Takisawa H; Yamamoto T J Biochem; 1985 Feb; 97(2):643-53. PubMed ID: 3159720 [TBL] [Abstract][Full Text] [Related]
16. Val200 residue in Lys189-Lys205 outermost loop on the A domain of sarcoplasmic reticulum Ca2+-ATPase is critical for rapid processing of phosphoenzyme intermediate after loss of ADP sensitivity. Kato S; Kamidochi M; Daiho T; Yamasaki K; Gouli W; Suzuki H J Biol Chem; 2003 Mar; 278(11):9624-9. PubMed ID: 12496291 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
18. Phosphoenzyme decomposition in dog cardiac sarcoplasmic reticulum Ca2+-ATPase. Wang T Biochemistry; 1987 Dec; 26(25):8360-5. PubMed ID: 2964866 [TBL] [Abstract][Full Text] [Related]
20. Changes in the steady-state fluorescence anisotropy of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to the specific thiol of sarcoplasmic reticulum Ca2+-ATPase throughout the catalytic cycle. Suzuki H; Obara M; Kubo K; Kanazawa T J Biol Chem; 1989 Jan; 264(2):920-7. PubMed ID: 2521338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]