BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 2946700)

  • 1. Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells.
    Woods CM; Boyer B; Vogt PK; Lazarides E
    J Cell Biol; 1986 Nov; 103(5):1789-98. PubMed ID: 2946700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression and synthesis of the band 3 protein initiates the formation of a stable membrane skeleton in murine Rauscher-transformed erythroid cells.
    Hanspal M; Hanspal JS; Kalraiya R; Palek J
    Eur J Cell Biol; 1992 Aug; 58(2):313-8. PubMed ID: 1425768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous synthesis of membrane skeletal proteins during terminal maturation of murine erythroblasts.
    Hanspal M; Hanspal JS; Kalraiya R; Liu SC; Sahr KE; Howard D; Palek J
    Blood; 1992 Jul; 80(2):530-9. PubMed ID: 1385736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation.
    Koury MJ; Bondurant MC; Rana SS
    J Cell Physiol; 1987 Dec; 133(3):438-48. PubMed ID: 3693408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelsolin is expressed in early erythroid progenitor cells and negatively regulated during erythropoiesis.
    Hinssen H; Vandekerckhove J; Lazarides E
    J Cell Biol; 1987 Sep; 105(3):1425-33. PubMed ID: 2821013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cytoskeletal proteins and their mRNAs during maturation of human erythroid progenitor cells.
    Wickrema A; Koury ST; Dai CH; Krantz SB
    J Cell Physiol; 1994 Sep; 160(3):417-26. PubMed ID: 8077279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation.
    Koury MJ; Bondurant MC; Mueller TJ
    J Cell Physiol; 1986 Feb; 126(2):259-65. PubMed ID: 3080441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin.
    Moon RT; Lazarides E
    J Cell Biol; 1984 May; 98(5):1899-904. PubMed ID: 6233291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts.
    Satchwell TJ; Bell AJ; Hawley BR; Pellegrin S; Mordue KE; van Deursen CT; Braak NH; Huls G; Leers MP; Overwater E; Tamminga RY; van der Zwaag B; Fermo E; Bianchi P; van Wijk R; Toye AM
    Haematologica; 2016 Sep; 101(9):1018-27. PubMed ID: 27247322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of differentiation and age-related antigens on chicken erythroleukemia cells transformed by avian erythroblastosis virus (AEV).
    Krsmanovic V; Blanchet JP; Park I; Raynaud I
    Exp Cell Res; 1983 Sep; 147(2):351-8. PubMed ID: 6578052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-sensitive v-sea transformed erythroblasts: a model system to study gene expression during erythroid differentiation.
    Knight J; Zenke M; Disela C; Kowenz E; Vogt P; Engel JD; Hayman MJ; Beug H
    Genes Dev; 1988 Feb; 2(2):247-58. PubMed ID: 3360325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different sequences of expression of band 3, spectrin, and ankyrin during normal erythropoiesis and erythroleukemia.
    Nehls V; Zeitler-Zapf P; Drenckhahn D
    Am J Pathol; 1993 May; 142(5):1565-73. PubMed ID: 7684199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranslational control of membrane-skeleton (ankyrin and alpha beta-spectrin) assembly in early myogenesis.
    Nelson WJ; Lazarides E
    J Cell Biol; 1985 May; 100(5):1726-35. PubMed ID: 3157691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of protein 4.1 during chicken erythroid differentiation.
    Staufenbiel M; Lazarides E
    J Cell Biol; 1986 Apr; 102(4):1157-63. PubMed ID: 3958041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the key membrane protein changes during in vitro erythropoiesis of protein 4.2 (-) cells (mutations Chartres 1 and 2).
    van den Akker E; Satchwell TJ; Pellegrin S; Flatt JF; Maigre M; Daniels G; Delaunay J; Bruce LJ; Toye AM
    Haematologica; 2010 Aug; 95(8):1278-86. PubMed ID: 20179084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-surface glycoprotein synthesis during differentiation of chicken erythroblasts transformed by temperature-sensitive avian erythroblastosis virus.
    Savin KW; Beug H
    Cell Differ; 1981 May; 10(3):163-71. PubMed ID: 7249085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton.
    Kodippili GC; Spector J; Kang GE; Liu H; Wickrema A; Ritchie K; Low PS
    Br J Haematol; 2010 Sep; 150(5):592-600. PubMed ID: 20553270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing patterns in cytoskeletal mRNA expression and protein synthesis during murine erythropoiesis in vivo.
    Peters LL; White RA; Birkenmeier CS; Bloom ML; Lux SE; Barker JE
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5749-53. PubMed ID: 1385865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appearance of new variants of membrane skeletal protein 4.1 during terminal differentiation of avian erythroid and lenticular cells.
    Granger BL; Lazarides E
    Nature; 1985 Jan 17-23; 313(5999):238-41. PubMed ID: 3855501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein synthesis in differentiating normal and leukemic erythroid cells.
    Adkins B; Beug H; Graf T
    J Cell Physiol; 1985 May; 123(2):269-76. PubMed ID: 3856569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.