BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 2946706)

  • 1. Association of tyrosine protein kinase activity with mitochondria in human fibroblasts.
    Piedimonte G; Silvotti L; Chamaret S; Borghetti AF; Montagnier L
    J Cell Biochem; 1986; 32(2):113-23. PubMed ID: 2946706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of tyrosine kinase activity associated with mitochondrial outer membrane in sarcoma 180 cells.
    Piedimonte G; Chamaret S; Dauguet C; Borghetti AF; Montagnier L
    J Cell Biochem; 1988 Jan; 36(1):91-102. PubMed ID: 3343288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shedding of tyrosine and serine/threonine ecto-protein kinases from human leukemic cells.
    Paas Y; Fishelson Z
    Arch Biochem Biophys; 1995 Feb; 316(2):780-8. PubMed ID: 7864634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-induced alterations in the functioning of protein serine/threonine and tyrosine kinases in Streptomyces fradiae cells.
    Elizarov SM; Mironov VA; Danilenko VN
    IUBMB Life; 2000 Aug; 50(2):139-43. PubMed ID: 11185960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases.
    Torres M; Hall FL; O'Neill K
    J Immunol; 1993 Feb; 150(4):1563-77. PubMed ID: 7679431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of threonine residues in the regulation of manganese-dependent arabidopsis serine/threonine/tyrosine protein kinase activity.
    Reddy MM; Rajasekharan R
    Arch Biochem Biophys; 2006 Nov; 455(2):99-109. PubMed ID: 17054899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the insulin receptor kinase with serine/threonine kinases in vitro.
    Haring HU; White MF; Kahn CR; Ahmad Z; DePaoli-Roach AA; Roach PJ
    J Cell Biochem; 1985; 28(2):171-82. PubMed ID: 3001107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine kinase activities in normal and neoplastic epithelia tissue of the human upper aero-digestive tract.
    Rydell EL; Olofsson J; Hellem S; Axelsson KL
    Second Messengers Phosphoproteins; 1991; 13(4):217-29. PubMed ID: 1812286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the protein tyrosine kinase activity and autophosphorylation of the epidermal growth factor receptor by its juxtamembrane region.
    Poppleton HM; Wiepz GJ; Bertics PJ; Patel TB
    Arch Biochem Biophys; 1999 Mar; 363(2):227-36. PubMed ID: 10068444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation loop phosphorylation-independent kinase activity of human protein kinase C zeta.
    Ranganathan S; Wang Y; Kern FG; Qu Z; Li R
    Proteins; 2007 May; 67(3):709-19. PubMed ID: 17335005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of mitogen-activated protein kinase activity by different secretory stimuli in rat basophilic leukemia cells.
    Offermanns S; Jones SV; Bombien E; Schultz G
    J Immunol; 1994 Jan; 152(1):250-61. PubMed ID: 8254195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the platelet-derived growth factor-dependent tyrosine kinase activity in sparse and confluent fibroblasts.
    Kazlauskas A; DiCorleto PE
    J Cell Physiol; 1986 Feb; 126(2):225-36. PubMed ID: 3003124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HER-2/c-erbB2 is phosphorylated by calmodulin-dependent protein kinase II on a single site in the cytoplasmic tail at threonine-1172.
    Feinmesser RL; Gray K; Means AR; Chantry A
    Oncogene; 1996 Jun; 12(12):2725-30. PubMed ID: 8700533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The juxtamembrane region of the epidermal growth factor receptor is required for phosphorylation of Galpha(s).
    Poppleton HM; Sun H; Mullenix JB; Wiepz GJ; Bertics PJ; Patel TB
    Arch Biochem Biophys; 2000 Nov; 383(2):309-17. PubMed ID: 11185568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the epidermal growth factor receptor by phosphorylation.
    Bertics PJ; Weber W; Cochet C; Gill GN
    J Cell Biochem; 1985; 29(3):195-208. PubMed ID: 3001110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and inactivation of the mitotic inhibitor Wee1 by the nim1/cdr1 kinase.
    Parker LL; Walter SA; Young PG; Piwnica-Worms H
    Nature; 1993 Jun; 363(6431):736-8. PubMed ID: 8515817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation and identification of tyrosine kinase from the cytosolic fraction of bovine retinal rod outer segments].
    Sholukh AM; Artamonov ID; Baranova LA; Lipkin VM; VolotovskiÄ­ ID
    Mol Biol (Mosk); 2001; 35(3):510-4. PubMed ID: 11443935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, identification and phosphorylation of annexin I from rat liver mitochondria.
    Yoshii K; Sugimoto K; Tai Y; Konishi R; Tokuda M
    Acta Med Okayama; 2000 Apr; 54(2):57-65. PubMed ID: 10806526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of mitochondrial tyrosine kinase activity following viral transformation.
    Piedimonte G; Silvotti L; Borghetti AF; Montagnier L
    Cancer Lett; 1988 Feb; 39(1):1-8. PubMed ID: 2830962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytohemagglutinin-induced changes in tyrosine protein kinase and its endogenous substrates in human lymphocytes.
    Piga A; Wickremasinghe RG; Taheri MR; Yaxley JC; Hoffbrand AV
    Exp Cell Res; 1985 Jul; 159(1):103-12. PubMed ID: 4040863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.