BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 29467301)

  • 1. Oncogenic JAK2
    Prestipino A; Emhardt AJ; Aumann K; O'Sullivan D; Gorantla SP; Duquesne S; Melchinger W; Braun L; Vuckovic S; Boerries M; Busch H; Halbach S; Pennisi S; Poggio T; Apostolova P; Veratti P; Hettich M; Niedermann G; Bartholomä M; Shoumariyeh K; Jutzi JS; Wehrle J; Dierks C; Becker H; Schmitt-Graeff A; Follo M; Pfeifer D; Rohr J; Fuchs S; Ehl S; Hartl FA; Minguet S; Miething C; Heidel FH; Kröger N; Triviai I; Brummer T; Finke J; Illert AL; Ruggiero E; Bonini C; Duyster J; Pahl HL; Lane SW; Hill GR; Blazar BR; von Bubnoff N; Pearce EL; Zeiser R
    Sci Transl Med; 2018 Feb; 10(429):. PubMed ID: 29467301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic PD-L1 expression in JAK2 (V617F) myeloproliferative neoplasm patients is mediated via increased activation of STAT3 and STAT5.
    Guru SA; Sumi MP; Mir R; Waza AA; Bhat MA; Zuberi M; Lali P; Saxena A
    Hum Cell; 2020 Oct; 33(4):1099-1111. PubMed ID: 32430672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Tyrosine Residues in the Erythropoietin Receptor Are Essential for Janus Kinase 2 V617F Mutant-induced Tumorigenesis.
    Ueda F; Tago K; Tamura H; Funakoshi-Tago M
    J Biol Chem; 2017 Feb; 292(5):1826-1846. PubMed ID: 27998978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant.
    Funakoshi-Tago M; Tsuruya R; Ueda F; Ishihara A; Kasahara T; Tamura H; Tago K
    Cytokine; 2019 Nov; 123():154753. PubMed ID: 31255914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms.
    Milosevic Feenstra JD; Jäger R; Schischlik F; Ivanov D; Eisenwort G; Rumi E; Schuster M; Gisslinger B; Machherndl-Spandl S; Bettelheim P; Krauth MT; Keil F; Bock C; Cazzola M; Gisslinger H; Kralovics R; Valent P
    Am J Hematol; 2022 Apr; 97(4):390-400. PubMed ID: 35015307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of oncogenic signaling pathway induced by a myeloproliferative neoplasm-associated Janus kinase 2 (JAK2) V617F mutant].
    Funakoshi-Tago M
    Yakugaku Zasshi; 2012; 132(11):1267-72. PubMed ID: 23123718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms.
    Baran-Marszak F; Magdoud H; Desterke C; Alvarado A; Roger C; Harel S; Mazoyer E; Cassinat B; Chevret S; Tonetti C; Giraudier S; Fenaux P; Cymbalista F; Varin-Blank N; Le Bousse-Kerdilès MC; Kiladjian JJ; Velazquez L
    Blood; 2010 Dec; 116(26):5961-71. PubMed ID: 20870899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK2 V617F uses distinct signalling pathways to induce cell proliferation and neutrophil activation.
    Oku S; Takenaka K; Kuriyama T; Shide K; Kumano T; Kikushige Y; Urata S; Yamauchi T; Iwamoto C; Shimoda HK; Miyamoto T; Nagafuji K; Kishimoto J; Shimoda K; Akashi K
    Br J Haematol; 2010 Aug; 150(3):334-44. PubMed ID: 20553273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed Cell Death Receptor (PD-1) Ligand (PD-L1) expression in Philadelphia chromosome-negative myeloproliferative neoplasms.
    Wang JC; Chen C; Kundra A; Kodali S; Pandey A; Wong C; Cheung T; Gotlieb V; Joseph G; Tribie S
    Leuk Res; 2019 Apr; 79():52-59. PubMed ID: 30851544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation
    Woods B; Chen W; Chiu S; Marinaccio C; Fu C; Gu L; Bulic M; Yang Q; Zouak A; Jia S; Suraneni PK; Xu K; Levine RL; Crispino JD; Wen QJ
    Clin Cancer Res; 2019 Oct; 25(19):5901-5912. PubMed ID: 31217200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative neoplasm (MPN).
    Glück M; Dally L; Jücker M; Ehm P
    Int J Biochem Cell Biol; 2022 Aug; 149():106229. PubMed ID: 35609769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
    Hoermann G; Cerny-Reiterer S; Herrmann H; Blatt K; Bilban M; Gisslinger H; Gisslinger B; Müllauer L; Kralovics R; Mannhalter C; Valent P; Mayerhofer M
    FASEB J; 2012 Feb; 26(2):894-906. PubMed ID: 22051730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential thrombocythaemia progression to the fibrotic phase is associated with a decrease in JAK2 and PDL1 levels.
    Lewandowski K; Kanduła Z; Gniot M; Paczkowska E; Nawrocka PM; Wojtaszewska M; Janowski M; Mariak M; Handschuh L; Kozlowski P
    Ann Hematol; 2022 Dec; 101(12):2665-2677. PubMed ID: 36266510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
    Shimizu T; Kubovcakova L; Nienhold R; Zmajkovic J; Meyer SC; Hao-Shen H; Geier F; Dirnhofer S; Guglielmelli P; Vannucchi AM; Feenstra JD; Kralovics R; Orkin SH; Skoda RC
    J Exp Med; 2016 Jul; 213(8):1479-96. PubMed ID: 27401344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.
    Winter PS; Sarosiek KA; Lin KH; Meggendorfer M; Schnittger S; Letai A; Wood KC
    Sci Signal; 2014 Dec; 7(357):ra122. PubMed ID: 25538080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metformin exerts multitarget antileukemia activity in JAK2
    Machado-Neto JA; Fenerich BA; Scopim-Ribeiro R; Eide CA; Coelho-Silva JL; Dechandt CRP; Fernandes JC; Rodrigues Alves APN; Scheucher PS; Simões BP; Alberici LC; de Figueiredo Pontes LL; Tognon CE; Druker BJ; Rego EM; Traina F
    Cell Death Dis; 2018 Feb; 9(3):311. PubMed ID: 29472557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dnmt3a is downregulated by Stat5a and mediates G0/G1 arrest by suppressing the miR-17-5p/Cdkn1a axis in Jak2
    Zhou J; Guo C; Wu H; Li B; Zhou LL; Liang AB; Fu JF
    BMC Cancer; 2021 Nov; 21(1):1213. PubMed ID: 34773997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms.
    Fleischman AG; Aichberger KJ; Luty SB; Bumm TG; Petersen CL; Doratotaj S; Vasudevan KB; LaTocha DH; Yang F; Press RD; Loriaux MM; Pahl HL; Silver RT; Agarwal A; O'Hare T; Druker BJ; Bagby GC; Deininger MW
    Blood; 2011 Dec; 118(24):6392-8. PubMed ID: 21860020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of the role of NKG2D ligands MICA and MICB in JAK2 V617F-positive myeloproliferative neoplasms.
    Ivanova M; Tsvetkova G; Lessichkova S; Gesheva N; Hadjiev E; Shivarov V
    HLA; 2023 Aug; 102(2):168-178. PubMed ID: 37002719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.