These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29467365)

  • 1. High-performance graphdiyne-based electrochemical actuators.
    Lu C; Yang Y; Wang J; Fu R; Zhao X; Zhao L; Ming Y; Hu Y; Lin H; Tao X; Li Y; Chen W
    Nat Commun; 2018 Feb; 9(1):752. PubMed ID: 29467365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible and Electroactive Ionogel Graphene Composite Actuator.
    Lu C; Chen X
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Actuators Based on Two-Dimensional Ti
    Pang D; Alhabeb M; Mu X; Dall'Agnese Y; Gogotsi Y; Gao Y
    Nano Lett; 2019 Oct; 19(10):7443-7448. PubMed ID: 31536705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic molybdenum disulfide nanosheet-based electrochemical actuators.
    Acerce M; Akdoğan EK; Chhowalla M
    Nature; 2017 Sep; 549(7672):370-373. PubMed ID: 28854166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Hierarchical Black-Phosphorous-Based Soft Electrochemical Actuators in Bioinspired Applications.
    Wu G; Wu X; Xu Y; Cheng H; Meng J; Yu Q; Shi X; Zhang K; Chen W; Chen S
    Adv Mater; 2019 Jun; 31(25):e1806492. PubMed ID: 31012167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications.
    Zhu X; Hu Y; Wu G; Chen W; Bao N
    ACS Nano; 2021 Jun; 15(6):9273-9298. PubMed ID: 34018737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing Performance of a Hybrid MnO
    Wang SQ; Zhang B; Luo YW; Meng X; Wang ZX; Luo XM; Zhang GP
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9281-9291. PubMed ID: 35148053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Electrochemical Actuation Performances of Nanoporous Ternary AlCoCu Alloy with a Unique Nanosheet Structure.
    Chen X; Tan F; Wang J; Zhao K; Wang Y; Zhang J; Liu H
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes.
    Ko J; Kim D; Song Y; Lee S; Kwon M; Han S; Kang D; Kim Y; Huh J; Koh JS; Cho J
    ACS Nano; 2020 Sep; 14(9):11906-11918. PubMed ID: 32885947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed.
    Lee HT; Kim MS; Lee GY; Kim CS; Ahn SH
    Small; 2018 Jun; 14(23):e1801023. PubMed ID: 29717811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles.
    Bhatti MRA; Bilotti E; Zhang H; Varghese S; Verpaalen RCP; Schenning APHJ; Bastiaansen CWM; Peijs T
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33210-33218. PubMed ID: 32580542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured carbon materials based electrothermal air pump actuators.
    Liu Q; Liu L; Kuang J; Dai Z; Han J; Zhang Z
    Nanoscale; 2014 Jun; 6(12):6932-8. PubMed ID: 24839084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator.
    Wu G; Hu Y; Liu Y; Zhao J; Chen X; Whoehling V; Plesse C; Nguyen GT; Vidal F; Chen W
    Nat Commun; 2015 Jun; 6():7258. PubMed ID: 26028354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced Magnetic-Responsive Electro-Ionic Artificial Muscles by 3D Laser-Induced Graphene Nano-Heterostructures.
    Xu Z; Deng K; Zhang Y; Zhu B; Yang J; Xue M; Jin H; He G; Zheng G; Zheng J; Wu D
    Adv Mater; 2024 Oct; ():e2407106. PubMed ID: 39380392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.
    Chen J; Liu G; Cheng J; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1186-91. PubMed ID: 27214895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dual-Responsive Magnetoactive and Electro-Ionic Soft Actuator Derived from a Nickel-Based Metal-Organic Framework.
    Mahato M; Hwang WJ; Tabassian R; Oh S; Nguyen VH; Nam S; Kim JS; Yoo H; Taseer AK; Lee MJ; Zhang H; Song TE; Oh IK
    Adv Mater; 2022 Sep; 34(35):e2203613. PubMed ID: 35772104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered and Active Nanochannel Electrode Design for High-Performance Electrochemical Actuator.
    Wu G; Hu Y; Zhao J; Lan T; Wang D; Liu Y; Chen W
    Small; 2016 Sep; 12(36):4986-4992. PubMed ID: 27119424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes.
    Kim O; Shin TJ; Park MJ
    Nat Commun; 2013; 4():2208. PubMed ID: 23896756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer interdigitated pillar electrostatic (PIPE) actuators.
    Ni D; Heisser R; Davaji B; Ivy L; Shepherd R; Lal A
    Microsyst Nanoeng; 2022; 8():18. PubMed ID: 35136654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.