BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29467643)

  • 1. Simultaneous Estimation of Low- and High-Order Functional Connectivity for Identifying Mild Cognitive Impairment.
    Zhou Y; Qiao L; Li W; Zhang L; Shen D
    Front Neuroinform; 2018; 12():3. PubMed ID: 29467643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating high-order brain functional networks by correlation-preserving embedding.
    Su H; Zhang L; Qiao L; Liu M
    Med Biol Eng Comput; 2022 Oct; 60(10):2813-2823. PubMed ID: 35869385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Synchronization Estimation of Low- and High-Order Functional Connectivity Based on Sub-Network Division for the Diagnosis of Autism Spectrum Disorder.
    Zhao F; Han Z; Cheng D; Mao N; Chen X; Li Y; Fan D; Liu P
    Front Neurosci; 2021; 15():810431. PubMed ID: 35221892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying depression disorder using multi-view high-order brain function network derived from electroencephalography signal.
    Zhao F; Gao T; Cao Z; Chen X; Mao Y; Mao N; Ren Y
    Front Comput Neurosci; 2022; 16():1046310. PubMed ID: 36387303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.
    Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D
    Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of Cognitive Impairment in Adult Moyamoya Disease: A Classifier Based on High-Order Resting-State Functional Connectivity Network.
    Lei Y; Chen X; Su JB; Zhang X; Yang H; Gao XJ; Ni W; Chen L; Yu JH; Gu YX; Mao Y
    Front Neural Circuits; 2020; 14():603208. PubMed ID: 33408614
    [No Abstract]   [Full Text] [Related]  

  • 7. High-order resting-state functional connectivity network for MCI classification.
    Chen X; Zhang H; Gao Y; Wee CY; Li G; Shen D;
    Hum Brain Mapp; 2016 Sep; 37(9):3282-96. PubMed ID: 27144538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of High-Order and Low-Order Effective Connectivity Networks for MCI Classification.
    Li Y; Liu J; Li K; Yap PT; Kim M; Wee CY; Shen D
    Mach Learn Med Imaging; 2017; 2017():307-315. PubMed ID: 29911206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification.
    Li Y; Liu J; Peng Z; Sheng C; Kim M; Yap PT; Wee CY; Shen D
    Neuroinformatics; 2020 Jan; 18(1):1-24. PubMed ID: 30982183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Function Network: Higher Order vs. More Discrimination.
    Guo T; Zhang Y; Xue Y; Qiao L; Shen D
    Front Neurosci; 2021; 15():696639. PubMed ID: 34497485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
    Zhang Y; Zhang H; Chen X; Lee SW; Shen D
    Sci Rep; 2017 Jul; 7(1):6530. PubMed ID: 28747782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment.
    Zhang Y; Zhang H; Chen X; Shen D
    Connectomics Neuroimaging (2017); 2017; 10511():9-16. PubMed ID: 30345426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.
    Chen X; Zhang H; Lee SW; Shen D;
    Neuroinformatics; 2017 Jul; 15(3):271-284. PubMed ID: 28555371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification.
    Zhou Y; Zhang L; Teng S; Qiao L; Shen D
    Front Neurosci; 2018; 12():959. PubMed ID: 30618582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment.
    Zhang H; Giannakopoulos P; Haller S; Lee SW; Qiu S; Shen D
    Neuroinformatics; 2019 Oct; 17(4):547-561. PubMed ID: 30739281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personalized Functional Connectivity Based Spatio-Temporal Aggregated Attention Network for MCI Identification.
    Cui W; Ma Y; Ren J; Liu J; Ma G; Liu H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2257-2267. PubMed ID: 37104108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection forĀ Mild Cognitive Impairment.
    Zhang H; Chen X; Shi F; Li G; Kim M; Giannakopoulos P; Haller S; Shen D
    J Alzheimers Dis; 2016 Oct; 54(3):1095-1112. PubMed ID: 27567817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pairwise functional connectivity similarity measure method based on few-shot learning for early MCI detection.
    Zhang X; Shams SP; Yu H; Wang Z; Zhang Q
    Front Neurosci; 2022; 16():1081788. PubMed ID: 36601596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.