These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29467778)

  • 1. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient.
    Redelstein R; Dinter T; Hertel D; Leuschner C
    Front Plant Sci; 2018; 9():98. PubMed ID: 29467778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water sources of plant uptake along a salt marsh flooding gradient.
    Redelstein R; Coners H; Knohl A; Leuschner C
    Oecologia; 2018 Oct; 188(2):607-622. PubMed ID: 30051213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saltmarsh plant responses to eutrophication.
    Johnson DS; Warren RS; Deegan LA; Mozdzer TJ
    Ecol Appl; 2016 Dec; 26(8):2647-2659. PubMed ID: 27763699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survey of sediment oxygenation in rhizospheres of the saltmarsh grass - Spartina anglica.
    Koop-Jakobsen K; Fischer J; Wenzhöfer F
    Sci Total Environ; 2017 Jul; 589():191-199. PubMed ID: 28262356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass
    Hernández EG; Baraza E; Smit C; Berg MP; Falcão Salles J
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33096699
    [No Abstract]   [Full Text] [Related]  

  • 8. Spatial and temporal variations in salt marsh microorganisms of the Wadden Sea.
    Rinke M; Maraun M; Scheu S
    Ecol Evol; 2022 Mar; 12(3):e8767. PubMed ID: 35356561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Belowground productivity varies by assessment technique, vegetation type, and nutrient availability in tidal freshwater forested wetlands transitioning to marsh.
    From AS; Krauss KW; Noe GB; Cormier N; Stagg CL; Moss RF; Whitbeck JL
    PLoS One; 2021; 16(7):e0253554. PubMed ID: 34270570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.
    Ford H; Garbutt A; Ladd C; Malarkey J; Skov MW
    J Veg Sci; 2016 Mar; 27(2):259-268. PubMed ID: 27867297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics.
    Cao H; Zhu Z; James R; Herman PMJ; Zhang L; Yuan L; Bouma TJ
    Ann Bot; 2020 Feb; 125(2):345-352. PubMed ID: 31761951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient.
    Bouma TJ; Koutstaal BP; van Dongen M; Nielsen KL
    Oecologia; 2001 Feb; 126(4):472-481. PubMed ID: 28547231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae).
    Granse D; Titschack J; Ainouche M; Jensen K; Koop-Jakobsen K
    Sci Total Environ; 2022 Jan; 802():149771. PubMed ID: 34525732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-Mediated Rhizosphere Oxygenation in the Native Invasive Salt Marsh Grass
    Koop-Jakobsen K; Meier RJ; Mueller P
    Front Plant Sci; 2021; 12():669751. PubMed ID: 34177984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of hydraulic restoration of San Pablo Marsh, California.
    Grismer ME; Kollar J; Syder J
    Environ Monit Assess; 2004 Nov; 98(1-3):69-92. PubMed ID: 15473530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is saltmarsh restoration success constrained by matching natural environments or altered succession? A test using niche models.
    Sullivan MJP; Davy AJ; Grant A; Mossman HL
    J Appl Ecol; 2018 May; 55(3):1207-1217. PubMed ID: 29780171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.
    Haynert K; Kiggen M; Klarner B; Maraun M; Scheu S
    PLoS One; 2017; 12(12):e0189645. PubMed ID: 29240806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.