BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2946782)

  • 1. Suppressor T cell growth and differentiation: production of suppressor T cell differentiation factor by the murine thymoma BW5147.
    Chu WS; Carpino MR; Dent A; Rich S
    J Immunol; 1987 Jan; 138(1):78-86. PubMed ID: 2946782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressor T cell growth and differentiation: evidence for induced receptors on suppressor T cells that bind a suppressor T cell differentiation factor.
    Chu WS; Rich S
    J Immunol; 1987 Jan; 138(2):504-12. PubMed ID: 3025299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressor T cell growth and differentiation. Identification of a cofactor required for suppressor T cell function and distinct from interleukin 2.
    Rich S; Carpino MR; Arhelger C
    J Exp Med; 1984 May; 159(5):1473-90. PubMed ID: 6201587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressor T cell circuits in contact sensitivity. II. Induction and characterization of an efferent-acting, antigen-specific, H-2-restricted, monoclonal T cell hybrid-derived suppressor factor specific for DNFB contact hypersensitivity.
    Miller SD
    J Immunol; 1984 Dec; 133(6):3112-20. PubMed ID: 6208271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback regulation of immune suppression by a suppressor factor.
    Ikezawa Z; Arden B; Nagy ZA; Klein J
    Eur J Immunol; 1984 Aug; 14(8):681-6. PubMed ID: 6205879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and antigenic requirements for production of mixed leukocyte reaction suppressor factor.
    Dennison DK; Rich SS; Rich RR
    J Immunol; 1981 Nov; 127(5):2176-82. PubMed ID: 6457865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology of mixed leukocyte reaction suppressor factor. I. Role of cytoskeleton and protein synthesis in production and secretion.
    Belmont JW; Rich RR; Rich SS
    J Immunol; 1979 Mar; 122(3):1022-8. PubMed ID: 156208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble factors in tolerance and contact sensitivity to DNFB in mice. VI. Cellular and lymphokine requirements for stimulating suppressor factor production in vitro.
    Fairchild RL; Moorhead JW
    J Immunol; 1986 Oct; 137(7):2125-31. PubMed ID: 2944949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressor-target interaction in alloantigen induced responses: induction of a second cell in the suppressive pathway.
    Beckwith M; Rich SS
    J Immunol; 1982 Feb; 128(2):791-6. PubMed ID: 6172510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial characterization of a lymphokine pathway for the immunologic induction of tumor necrosis factor-alpha release from human peripheral blood mononuclear cells.
    Kornbluth RS; Gregory SA; Edgington TS
    J Immunol; 1988 Sep; 141(6):2006-15. PubMed ID: 3139748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a tumor-specific T suppressor factor from a T cell hybridoma.
    Steele JK; Stammers AT; Levy JG
    J Immunol; 1985 Apr; 134(4):2767-78. PubMed ID: 2579156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoregulatory pathways in adult responder mice. III. Establishment of a GAT-specific suppressor T cell clone from GAT-tolerant responders which afferently regulates DTH responses.
    Jenkins MK; Miller SD
    J Mol Cell Immunol; 1985; 2(1):1-13. PubMed ID: 2978221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of I-J in the suppressor T-cell circuit which influences the effector stage of contact sensitivity: antigen together with syngeneic I-J region determinants induces and activates T suppressor cells.
    Colizzi V; Asherson GL; James BM
    Immunology; 1983 May; 49(1):191-9. PubMed ID: 6220964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of anti-LDH-B response by T suppressor factors.
    Ikezawa Z; Nagy ZA; Klein J
    J Immunol; 1984 Apr; 132(4):1605-7. PubMed ID: 6607942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory mechanisms in cell-mediated immune responses. II. Comparison of culture-induced and alloantigen-induced suppressor cells in MLR and CML.
    Nadler LM; Hodes RJ
    J Immunol; 1977 May; 118(5):1886-95. PubMed ID: 140197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of T helper 1 and 2 cell subsets in normal mice. Helper T cells responsible for IL-4 and IL-5 production are present as precursors that require priming before they develop into lymphokine-secreting cells.
    Swain SL; McKenzie DT; Weinberg AD; Hancock W
    J Immunol; 1988 Nov; 141(10):3445-55. PubMed ID: 2972774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoregulation in the rat: characteristics of a suppressor T cell that inhibits antigen-dependent cell proliferation.
    Sopori ML; Perrone RS; Cherian S; Cross RJ; Kaplan AM
    J Immunol; 1985 Jul; 135(1):80-6. PubMed ID: 2582055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The AKR thymoma BW5147 is able to produce lymphokines when stimulated with calcium ionophore and phorbol ester.
    Hagiwara H; Yokota T; Luh J; Lee F; Arai K; Arai N; Zlotnik A
    J Immunol; 1988 Mar; 140(5):1561-5. PubMed ID: 3126229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of IgE production in B hybridomas by IgE class-specific suppressor factor from T hybridomas.
    Suemura M; Ishizaka A; Kobatake S; Sugimura K; Maeda K; Nakanishi K; Kishimoto S; Yamamura Y; Kishimoto T
    J Immunol; 1983 Mar; 130(3):1056-60. PubMed ID: 6218197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T cell-derived IL-4 and dendritic cell-derived IL-12 regulate the lymphokine-producing phenotype of alloantigen-primed naive human CD4 T cells.
    Ohshima Y; Delespesse G
    J Immunol; 1997 Jan; 158(2):629-36. PubMed ID: 8992977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.