These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Appendix 1: some problems arising when solving the convolution equation. Hieke D; Bappert E; Hoke M; Elberling C Scand Audiol Suppl; 1979; (9):155-60. PubMed ID: 294678 [No Abstract] [Full Text] [Related]
4. Effect of recovery properties on the discharge pattern of auditory nerve fibres. Lütkenhöner B; Hoke M; Bappert E Scand Audiol Suppl; 1979 Mar; 11():25-43. PubMed ID: 299187 [No Abstract] [Full Text] [Related]
5. A new model of an auditory nerve fibre. Lütkenhöner B; Hoke M Scand Audiol Suppl; 1979; (9):93-108. PubMed ID: 294693 [No Abstract] [Full Text] [Related]
6. Human auditory nerve action potentials. Coats AC Neurology; 1970 Apr; 20(4):418. PubMed ID: 5535083 [No Abstract] [Full Text] [Related]
7. Intensity dependence of the compound action potential and the deconvolution technique. Bappert E; Hoke M; Lütkenhöner ; Niestroj B Scand Audiol Suppl; 1979 Mar; 11():45-57. PubMed ID: 299188 [No Abstract] [Full Text] [Related]
8. [Variable effects of sound masking on the action potential of the auditory nerve in accordance with the position of the receptor electrode in the cochlea]. Legouix JP C R Seances Soc Biol Fil; 1967 Jul; 161(2):272-4. PubMed ID: 4229121 [No Abstract] [Full Text] [Related]
9. Simulation of the electrically stimulated auditory nerve. Rattay F Artif Organs; 1997 Mar; 21(3):213-5. PubMed ID: 9148708 [TBL] [Abstract][Full Text] [Related]
10. [Electric function potentials of the auditory analyzer]. Sekula J; Trabka J Acta Physiol Pol; 1967; 18(5):747-54. PubMed ID: 6062744 [No Abstract] [Full Text] [Related]
11. Deconvolution of compound action potentials and nonlinear features of the PST histogram. Bappert E; Hoke M; Lütkenhöner B Hear Res; 1980 Jun; 2(3-4):573-9. PubMed ID: 7410263 [TBL] [Abstract][Full Text] [Related]
12. Impulse patterns of auditory nerve fibres to extra- and intracochlear electrical stimulation. Hartmann R; Klinke R Acta Otolaryngol Suppl; 1990; 469():128-34. PubMed ID: 2162619 [TBL] [Abstract][Full Text] [Related]
13. Role of inner and outer hair cells in neural excitation. Strelioff D; Sitko ST; Honrubia V Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol; 1976; 82(3 Pt 1):322-5. PubMed ID: 960403 [No Abstract] [Full Text] [Related]
14. Reverse correlation. II. Initiation of nerve impulses in the inner ear. De Boer E Proc K Ned Akad Wet C; 1969; 72(2):129-51. PubMed ID: 4241594 [No Abstract] [Full Text] [Related]
15. [Bio-electric phenomena in the peripheral acoustic system]. Boelen HJ Ned Tijdschr Geneeskd; 1970 Jul; 114(28):1195-6. PubMed ID: 5464976 [No Abstract] [Full Text] [Related]
16. The origin of the waveform of cochlear whole action potential. Boelen HJ Arch Otorhinolaryngol; 1979; 222(3):205-9. PubMed ID: 444154 [TBL] [Abstract][Full Text] [Related]
17. [Electrophysiologic studies on the peripheral part of the human ear, using appropriate computer programs]. Spreng M; Bumm P; Keidel WD; Wiegand HP Pflugers Arch; 1969; 307(2):R134. PubMed ID: 5814790 [No Abstract] [Full Text] [Related]
18. Tone burst electrocochleography in humans. Mouney DF; Cullen JK; Gondra MI; Berlin CI Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol; 1976; 82(3 Pt 1):348-55. PubMed ID: 960407 [TBL] [Abstract][Full Text] [Related]
19. [Changes of the intensity function of the response of the auditory nerve (N 1) by masking sounds]. Legouix JP; Remond MC; Delvoye M C R Seances Soc Biol Fil; 1970; 164(5):988-91. PubMed ID: 4250675 [No Abstract] [Full Text] [Related]
20. Model of discharge rate from auditory nerve fibers responding to electrical stimulation of the cochlea: identification of cues for current and time-interval coding. O'Leary SJ; Clark GM; Tong YC Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():121-3. PubMed ID: 7668601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]