BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29468111)

  • 1. Conversion of levoglucosan and cellobiosan by
    Linger JG; Hobdey SE; Franden MA; Fulk EM; Beckham GT
    Metab Eng Commun; 2016 Dec; 3():24-29. PubMed ID: 29468111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil.
    Helle S; Bennett NM; Lau K; Matsui JH; Duff SJ
    Carbohydr Res; 2007 Nov; 342(16):2365-70. PubMed ID: 17765879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance thin layer chromatography determination of cellobiosan and levoglucosan in bio-oil obtained by fast pyrolysis of sawdust.
    Tessini C; Vega M; Müller N; Bustamante L; von Baer D; Berg A; Mardones C
    J Chromatogr A; 2011 Jun; 1218(24):3811-5. PubMed ID: 21570078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Soil Microbes Capable of Utilizing Cellobiosan.
    Lian J; Choi J; Tan YS; Howe A; Wen Z; Jarboe LR
    PLoS One; 2016; 11(2):e0149336. PubMed ID: 26872347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered
    Peabody GL; Elmore JR; Martinez-Baird J; Guss AM
    Biotechnol Biofuels; 2019; 12():295. PubMed ID: 31890023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.
    Islam ZU; Zhisheng Y; Hassan el B; Dongdong C; Hongxun Z
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1557-79. PubMed ID: 26433384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
    Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion.
    Bacik JP; Klesmith JR; Whitehead TA; Jarboe LR; Unkefer CJ; Mark BL; Michalczyk R
    J Biol Chem; 2015 Oct; 290(44):26638-48. PubMed ID: 26354439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by
    Guarnieri MT; Ann Franden M; Johnson CW; Beckham GT
    Metab Eng Commun; 2017 Jun; 4():22-28. PubMed ID: 29468129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis.
    Wang J; You S; Lu Z; Chen R; Xu F
    Bioresour Technol; 2020 Jul; 307():123179. PubMed ID: 32222688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering ethanologenic Escherichia coli for levoglucosan utilization.
    Layton DS; Ajjarapu A; Choi DW; Jarboe LR
    Bioresour Technol; 2011 Sep; 102(17):8318-22. PubMed ID: 21719279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological upgrading of pyrolysis-derived wastewater: Engineering Pseudomonas putida for alkylphenol, furfural, and acetone catabolism and (methyl)muconic acid production.
    Henson WR; Meyers AW; Jayakody LN; DeCapite A; Black BA; Michener WE; Johnson CW; Beckham GT
    Metab Eng; 2021 Nov; 68():14-25. PubMed ID: 34438073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction and hydrolysis of levoglucosan from pyrolysis oil.
    Bennett NM; Helle SS; Duff SJ
    Bioresour Technol; 2009 Dec; 100(23):6059-63. PubMed ID: 19616934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel.
    Chang D; Wang C; Ndayisenga F; Yu Z
    Bioresour Bioprocess; 2021 Oct; 8(1):105. PubMed ID: 38650237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.
    Yang Z; Bai Z; Sun H; Yu Z; Li X; Guo Y; Zhang H
    Microb Cell Fact; 2014 Dec; 13():182. PubMed ID: 25551193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting microbial utilization of phenolic substrates from bio-oil.
    Davis K; Rover MR; Salvachúa D; Smith RG; Beckham GT; Wen Z; Brown RC; Jarboe LR
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1531-1545. PubMed ID: 31270700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both levoglucosan kinase activity and transport capacity limit the utilization of levoglucosan in Saccharomyces cerevisiae.
    Yang M; Wei T; Wang K; Jiang L; Zeng D; Sun X; Liu W; Shen Y
    Biotechnol Biofuels Bioprod; 2022 Sep; 15(1):94. PubMed ID: 36104808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous rhamnolipid biosynthesis by P. putida KT2440 on bio-oil derived small organic acids and fractions.
    Arnold S; Henkel M; Wanger J; Wittgens A; Rosenau F; Hausmann R
    AMB Express; 2019 May; 9(1):80. PubMed ID: 31152276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.