BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29468129)

  • 21. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass.
    Sandhya SV; Kiran K; Kuttiraja M; Preeti VE; Sindhu R; Vani S; Kumar SR; Pandey A; Binod P
    Indian J Exp Biol; 2013 Nov; 51(11):1012-7. PubMed ID: 24416939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts.
    Antunes MM; Silva AF; Bernardino CD; Fernandes A; Ribeiro F; Valente AA
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E.
    Clarkson SM; Hamilton-Brehm SD; Giannone RJ; Engle NL; Tschaplinski TJ; Hettich RL; Elkins JG
    Biotechnol Biofuels; 2014; 7(1):165. PubMed ID: 25506391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and Characterization of Bacteria That Use Furans as the Sole Carbon Source.
    Lee SA; Wrona LJ; Cahoon AB; Crigler J; Eiteman MA; Altman E
    Appl Biochem Biotechnol; 2016 Jan; 178(1):76-90. PubMed ID: 26419660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation.
    Salvachúa D; Mohagheghi A; Smith H; Bradfield MFA; Nicol W; Black BA; Biddy MJ; Dowe N; Beckham GT
    Biotechnol Biofuels; 2016; 9():28. PubMed ID: 26839591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of Recombinant
    Divate NR; Huang PJ; Chen GH; Chung YC
    Microorganisms; 2022 Apr; 10(5):. PubMed ID: 35630298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.
    Petersson A; Almeida JR; Modig T; Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF; Lidén G
    Yeast; 2006 Apr; 23(6):455-64. PubMed ID: 16652391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive Study Addressing the Challenge of Efficient Electrocatalytic Biomass Upgrading of 5-(Hydroxymethyl)Furfural (HMF) with a CH
    Xiao Y; Shen C; Xiong Z; Ding Y; Liu L; Zhang W; Wu YA
    Small; 2023 Oct; 19(42):e2302271. PubMed ID: 37328440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Case of Adaptive Laboratory Evolution (ALE): Biodegradation of Furfural by
    Igeño MI; Macias D; Blasco R
    Genes (Basel); 2019 Jun; 10(7):. PubMed ID: 31261932
    [No Abstract]   [Full Text] [Related]  

  • 32. Bioconversion of Furanic Compounds by
    Kriechbaum R; Spadiut O; Kopp J
    Microorganisms; 2024 Jun; 12(6):. PubMed ID: 38930604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved furfural tolerance in Escherichia coli mediated by heterologous NADH-dependent benzyl alcohol dehydrogenases.
    Willson BJ; Herman R; Langer S; Thomas GH
    Biochem J; 2022 May; 479(10):1045-1058. PubMed ID: 35502833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Ma M; Wang X; Zhang X; Zhao X
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8411-25. PubMed ID: 23912116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic
    Kurgan G; Panyon LA; Rodriguez-Sanchez Y; Pacheco E; Nieves LM; Mann R; Nielsen DR; Wang X
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineered
    Peabody GL; Elmore JR; Martinez-Baird J; Guss AM
    Biotechnol Biofuels; 2019; 12():295. PubMed ID: 31890023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee.
    Murkovic M; Bornik MA
    Mol Nutr Food Res; 2007 Apr; 51(4):390-4. PubMed ID: 17357981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach.
    Liu P; Xie J; Tan H; Zhou F; Zou L; Ouyang J
    Microb Cell Fact; 2020 May; 19(1):104. PubMed ID: 32410635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.