These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29468131)

  • 21. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study.
    García-García JD; Joshi J; Patterson JA; Trujillo-Rodriguez L; Reisch CR; Javanpour AA; Liu CC; Hanson AD
    Life (Basel); 2020 Sep; 10(9):. PubMed ID: 32899502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli.
    Parikh MR; Greene DN; Woods KK; Matsumura I
    Protein Eng Des Sel; 2006 Mar; 19(3):113-9. PubMed ID: 16423843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed evolution: selecting today's biocatalysts.
    Otten LG; Quax WJ
    Biomol Eng; 2005 Jun; 22(1-3):1-9. PubMed ID: 15857778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systems biology based metabolic engineering for non-natural chemicals.
    Biz A; Proulx S; Xu Z; Siddartha K; Mulet Indrayanti A; Mahadevan R
    Biotechnol Adv; 2019 Nov; 37(6):107379. PubMed ID: 30953683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories.
    Fisher AK; Freedman BG; Bevan DR; Senger RS
    Comput Struct Biotechnol J; 2014 Aug; 11(18):91-9. PubMed ID: 25379147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein engineering via sequence-performance mapping.
    McConnell A; Hackel BJ
    Cell Syst; 2023 Aug; 14(8):656-666. PubMed ID: 37494931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering synthetic auxotrophs for growth-coupled directed protein evolution.
    Chen J; Wang Y; Zheng P; Sun J
    Trends Biotechnol; 2022 Jul; 40(7):773-776. PubMed ID: 35168803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial approaches for inverse metabolic engineering applications.
    Skretas G; Kolisis FN
    Comput Struct Biotechnol J; 2012; 3():e201210021. PubMed ID: 24688681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme.
    Mueller-Cajar O; Morell M; Whitney SM
    Biochemistry; 2007 Dec; 46(49):14067-74. PubMed ID: 18004873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection strategies for improved biocatalysts.
    Boersma YL; Dröge MJ; Quax WJ
    FEBS J; 2007 May; 274(9):2181-95. PubMed ID: 17448143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Method of Inducible Directed Evolution to Evolve Complex Phenotypes.
    Al'Abri IS; Li Z; Haller DJ; Crook N
    Bio Protoc; 2022 Oct; 12(20):. PubMed ID: 36353713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed evolution and the creation of enantioselective biocatalysts.
    Jaeger KE; Eggert T; Eipper A; Reetz MT
    Appl Microbiol Biotechnol; 2001 May; 55(5):519-30. PubMed ID: 11414315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering.
    Weng L; Spoonamore JE
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed evolution of enzyme catalysts.
    Kuchner O; Arnold FH
    Trends Biotechnol; 1997 Dec; 15(12):523-30. PubMed ID: 9418307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A roadmap to directed enzyme evolution and screening systems for biotechnological applications.
    Martínez R; Schwaneberg U
    Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directed enzyme evolution: beyond the low-hanging fruit.
    Goldsmith M; Tawfik DS
    Curr Opin Struct Biol; 2012 Aug; 22(4):406-12. PubMed ID: 22579412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Protein engineering: from directed evolution to computational design].
    Qu G; Zhu T; Jiang Y; Wu B; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1843-1856. PubMed ID: 31668033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.