These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Host Cell Amplification of Nutritional Stress Contributes To Persistence in Chlamydia trachomatis. Pokorzynski ND; Alla MR; Carabeo RA mBio; 2022 Dec; 13(6):e0271922. PubMed ID: 36377897 [TBL] [Abstract][Full Text] [Related]
3. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis. Thompson CC; Carabeo RA Front Microbiol; 2011; 2():20. PubMed ID: 21687412 [TBL] [Abstract][Full Text] [Related]
4. Codon-Dependent Transcriptional Changes in Response to Tryptophan Limitation in the Tryptophan Auxotrophic Pathogens Chlamydia trachomatis and Streptococcus pyogenes. Ouellette SP; Hatch ND; Wood NA; Herrera AL; Chaussee MS mSystems; 2021 Dec; 6(6):e0126921. PubMed ID: 34904862 [TBL] [Abstract][Full Text] [Related]
5. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Pokorzynski ND; Brinkworth AJ; Carabeo R Elife; 2019 Apr; 8():. PubMed ID: 30938288 [TBL] [Abstract][Full Text] [Related]
6. Metabolic model guided CRISPRi identifies a central role for phosphoglycerate mutase in Chowdhury NB; Pokorzynski N; Rucks EA; Ouellette SP; Carabeo RA; Saha R mSystems; 2024 Jul; 9(7):e0071724. PubMed ID: 38940523 [TBL] [Abstract][Full Text] [Related]
7. Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFNgamma-mediated host cell tryptophan starvation. Ouellette SP; Hatch TP; AbdelRahman YM; Rose LA; Belland RJ; Byrne GI Mol Microbiol; 2006 Dec; 62(5):1387-401. PubMed ID: 17059564 [TBL] [Abstract][Full Text] [Related]
8. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Pokorzynski ND; Thompson CC; Carabeo RA Front Cell Infect Microbiol; 2017; 7():394. PubMed ID: 28951853 [TBL] [Abstract][Full Text] [Related]
9. Infection of HeLa cells with Chlamydia trachomatis inhibits protein synthesis and causes multiple changes to host cell pathways. Ohmer M; Tzivelekidis T; Niedenführ N; Volceanov-Hahn L; Barth S; Vier J; Börries M; Busch H; Kook L; Biniossek ML; Schilling O; Kirschnek S; Häcker G Cell Microbiol; 2019 Apr; 21(4):e12993. PubMed ID: 30551267 [TBL] [Abstract][Full Text] [Related]
10. Structure and Metal Binding Properties of Luo Z; Neville SL; Campbell R; Morey JR; Menon S; Thomas M; Eijkelkamp BA; Ween MP; Huston WM; Kobe B; McDevitt CA J Bacteriol; 2019 Dec; 202(1):. PubMed ID: 31611288 [TBL] [Abstract][Full Text] [Related]
13. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758 [TBL] [Abstract][Full Text] [Related]
14. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Leonhardt RM; Lee SJ; Kavathas PB; Cresswell P Infect Immun; 2007 Nov; 75(11):5105-17. PubMed ID: 17724071 [TBL] [Abstract][Full Text] [Related]
15. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive Patton MJ; Chen CY; Yang C; McCorrister S; Grant C; Westmacott G; Yuan XY; Ochoa E; Fariss R; Whitmire WM; Carlson JH; Caldwell HD; McClarty G mBio; 2018 Jan; 9(1):. PubMed ID: 29382731 [No Abstract] [Full Text] [Related]
16. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection. Gérard HC; Freise J; Wang Z; Roberts G; Rudy D; Krauss-Opatz B; Köhler L; Zeidler H; Schumacher HR; Whittum-Hudson JA; Hudson AP Microbes Infect; 2002 Jan; 4(1):13-22. PubMed ID: 11825770 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Chlamydial Rho and the Role of Rho-Mediated Transcriptional Polarity during Interferon Gamma-Mediated Tryptophan Limitation. Ouellette SP; Messerli PR; Wood NA; Hajovsky H Infect Immun; 2018 Jul; 86(7):. PubMed ID: 29712731 [TBL] [Abstract][Full Text] [Related]
19. Identification of a GrgA-Euo-HrcA Transcriptional Regulatory Network in Chlamydia. Wurihan W; Zou Y; Weber AM; Weldon K; Huang Y; Bao X; Zhu C; Wu X; Wang Y; Lai Z; Fan H mSystems; 2021 Aug; 6(4):e0073821. PubMed ID: 34342542 [TBL] [Abstract][Full Text] [Related]
20. Genome copy number regulates inclusion expansion, septation, and infectious developmental form conversion in Brothwell JA; Brockett M; Banerjee A; Stein BD; Nelson DE; Liechti GW J Bacteriol; 2021 Mar; 203(6):. PubMed ID: 33431433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]