These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 29468240)
1. Water structure and dynamics in the hydration layer of a type III anti-freeze protein. Brotzakis ZF; Voets IK; Bakker HJ; Bolhuis PG Phys Chem Chem Phys; 2018 Mar; 20(10):6996-7006. PubMed ID: 29468240 [TBL] [Abstract][Full Text] [Related]
2. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
3. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water. Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of the type III antifreeze protein action: a computational study. Yang C; Sharp KA Biophys Chem; 2004 Apr; 109(1):137-48. PubMed ID: 15059666 [TBL] [Abstract][Full Text] [Related]
5. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Maddah M; Maddah M; Peyvandi K Phys Chem Chem Phys; 2019 Oct; 21(39):21836-21846. PubMed ID: 31552400 [TBL] [Abstract][Full Text] [Related]
6. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
7. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant. Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407 [TBL] [Abstract][Full Text] [Related]
8. Analysis of thermal hysteresis protein hydration using the random network model. Gallagher KR; Sharp KA Biophys Chem; 2003 Sep; 105(2-3):195-209. PubMed ID: 14499892 [TBL] [Abstract][Full Text] [Related]
9. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Midya US; Bandyopadhyay S J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Ice-Binding Site of an Insect Antifreeze Protein Using Sum-Frequency Generation Spectroscopy. Meister K; Lotze S; Olijve LL; DeVries AL; Duman JG; Voets IK; Bakker HJ J Phys Chem Lett; 2015 Apr; 6(7):1162-7. PubMed ID: 26262966 [TBL] [Abstract][Full Text] [Related]
13. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
14. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm. Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics studies show solvation structure of type III antifreeze protein is disrupted at low pH. Peramo A Comput Biol Chem; 2018 Apr; 73():13-24. PubMed ID: 29413812 [TBL] [Abstract][Full Text] [Related]
16. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
17. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related]
18. Formation of ice-like water structure on the surface of an antifreeze protein. Smolin N; Daggett V J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017 [TBL] [Abstract][Full Text] [Related]
19. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight. Chakraborty S; Jana B Metallomics; 2019 Aug; 11(8):1387-1400. PubMed ID: 31267120 [TBL] [Abstract][Full Text] [Related]
20. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Ko TP; Robinson H; Gao YG; Cheng CH; DeVries AL; Wang AH Biophys J; 2003 Feb; 84(2 Pt 1):1228-37. PubMed ID: 12547803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]