BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29468240)

  • 1. Water structure and dynamics in the hydration layer of a type III anti-freeze protein.
    Brotzakis ZF; Voets IK; Bakker HJ; Bolhuis PG
    Phys Chem Chem Phys; 2018 Mar; 20(10):6996-7006. PubMed ID: 29468240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
    Verreault D; Alamdari S; Roeters SJ; Pandey R; Pfaendtner J; Weidner T
    Phys Chem Chem Phys; 2018 Oct; 20(42):26926-26933. PubMed ID: 30260363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of the type III antifreeze protein action: a computational study.
    Yang C; Sharp KA
    Biophys Chem; 2004 Apr; 109(1):137-48. PubMed ID: 15059666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study.
    Maddah M; Maddah M; Peyvandi K
    Phys Chem Chem Phys; 2019 Oct; 21(39):21836-21846. PubMed ID: 31552400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of thermal hysteresis protein hydration using the random network model.
    Gallagher KR; Sharp KA
    Biophys Chem; 2003 Sep; 105(2-3):195-209. PubMed ID: 14499892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface.
    Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A
    J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Ice-Binding Site of an Insect Antifreeze Protein Using Sum-Frequency Generation Spectroscopy.
    Meister K; Lotze S; Olijve LL; DeVries AL; Duman JG; Voets IK; Bakker HJ
    J Phys Chem Lett; 2015 Apr; 6(7):1162-7. PubMed ID: 26262966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics studies show solvation structure of type III antifreeze protein is disrupted at low pH.
    Peramo A
    Comput Biol Chem; 2018 Apr; 73():13-24. PubMed ID: 29413812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight.
    Chakraborty S; Jana B
    Metallomics; 2019 Aug; 11(8):1387-1400. PubMed ID: 31267120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation.
    Ko TP; Robinson H; Gao YG; Cheng CH; DeVries AL; Wang AH
    Biophys J; 2003 Feb; 84(2 Pt 1):1228-37. PubMed ID: 12547803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.