These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29468439)

  • 1. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.
    Razavi R; Abrishamifar SM; Rajaei GE; Kahkha MRR; Najafi M
    J Mol Model; 2018 Feb; 24(3):64. PubMed ID: 29468439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possibility of C38 and Si19Ge19 Nanocages in Anode of Metal Ion Batteries: Computational Examination.
    Rong-Jun B; Siddiqui MK; Razavi R; Taherkhani M; Najafi M
    Acta Chim Slov; 2018 Jun; 65(2):303-311. PubMed ID: 29993107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon and germanium nanocages as anode electrodes in sodium-ion and potassium-ion batteries.
    Wang J; Li W; Ma L
    J Mol Model; 2021 Feb; 27(2):64. PubMed ID: 33528640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into the electro-chemical properties of halogen (F, Cl and Br) doped BP and BN nanocages as anodes in metal-ion batteries.
    Abedi M; Eslami M; Ghadiri M; Mohammadinia S
    Sci Rep; 2020 Nov; 10(1):19948. PubMed ID: 33203896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.
    Nejati K; Hosseinian A; Bekhradnia A; Vessally E; Edjlali L
    J Mol Graph Model; 2017 Jun; 74():1-7. PubMed ID: 28324756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.
    Xiao B; Li YC; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35342-35352. PubMed ID: 27977126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory.
    Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O
    Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.
    Xiang P; Chen X; Zhang W; Li J; Xiao B; Li L; Deng K
    Phys Chem Chem Phys; 2017 Sep; 19(36):24945-24954. PubMed ID: 28875190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries.
    Khossossi N; Banerjee A; Benhouria Y; Essaoudi I; Ainane A; Ahuja R
    Phys Chem Chem Phys; 2019 Aug; 21(33):18328-18337. PubMed ID: 31397457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study.
    Lv X; Li F; Gong J; Gu J; Lin S; Chen Z
    Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries.
    Xin FX; Tian HJ; Wang XL; Xu W; Zheng WG; Han WQ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7912-9. PubMed ID: 25825935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of halogen induced improvement of β12 borophene for Na/Li storage by density functional theory.
    Javadian S; Hajilou A; Gharibi H
    J Mol Graph Model; 2023 Mar; 119():108373. PubMed ID: 36508891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential of MB
    Han Y; Wang L; Zheng B; Wang J; Zhang L; Xiao B
    RSC Adv; 2024 Apr; 14(16):11112-11120. PubMed ID: 38590358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.
    Wang D; Zhao Y; Xu X; Hercule KM; Yan M; An Q; Tian X; Xu J; Qu L; Mai L
    Nanoscale; 2014 Jul; 6(14):8124-9. PubMed ID: 24921199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sc
    Lv X; Wei W; Sun Q; Yu L; Huang B; Dai Y
    Chemphyschem; 2017 Jun; 18(12):1627-1634. PubMed ID: 28383808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries.
    Zhang X; Jin L; Dai X; Chen G; Liu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38978-38984. PubMed ID: 30354050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.
    Jena NK; Araujo RB; Shukla V; Ahuja R
    ACS Appl Mater Interfaces; 2017 May; 9(19):16148-16158. PubMed ID: 28443653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Graphite Intercalation Composite as the Anode for the Potassium-Ion Oxygen Battery in a Concentrated Ether-Based Electrolyte.
    Lei Y; Chen Y; Wang H; Hu J; Han D; Dong J; Xu W; Li X; Wang Y; Wu Y; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37027-37033. PubMed ID: 32814396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.