These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 29468762)
81. Monoterpenoid Glycosides from the Leaves of Lu SH; Huang J; Zuo HJ; Zhou ZB; Yang CY; Huang ZL Molecules; 2022 Jun; 27(12):. PubMed ID: 35744841 [TBL] [Abstract][Full Text] [Related]
82. Hypolipidemic and antioxidative effects of noni (Morinda citrifolia L.) juice on high- fat/cholesterol-dietary hamsters. Lin YL; Chou CH; Yang DJ; Chen JW; Tzang BS; Chen YC Plant Foods Hum Nutr; 2012 Sep; 67(3):294-302. PubMed ID: 22956352 [TBL] [Abstract][Full Text] [Related]
83. Rubus chingii var. suavissimus alleviates high-fat diet-induced lipid metabolism disorder via modulation of the PPARs/SREBP pathway in Syrian golden hamsters. Jiang MJ; Li L; Huang WF; Su J; Li YH; Qu XS; Fan LL J Nat Med; 2021 Sep; 75(4):884-892. PubMed ID: 34120311 [TBL] [Abstract][Full Text] [Related]
84. Investigation of the Lipid-Lowering Mechanisms and Active Ingredients of Danhe Granule on Hyperlipidemia Based on Systems Pharmacology. Chen K; Ma Z; Yan X; Liu J; Xu W; Li Y; Dai Y; Zhang Y; Xiao H Front Pharmacol; 2020; 11():528. PubMed ID: 32435189 [TBL] [Abstract][Full Text] [Related]
85. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Guo P; Kai Q; Gao J; Lian ZQ; Wu CM; Wu CA; Zhu HB J Pharmacol Sci; 2010; 113(4):395-403. PubMed ID: 20724804 [TBL] [Abstract][Full Text] [Related]
86. [Pandanus tectorius derived caffeoylquinic acids inhibit lipid accumulation in HepG2 hepatoma cells through regulation of gene expression involved in lipid metabolism]. Wu CM; Luan H; Wang S; Zhang XP; Liu HT; Guo P Yao Xue Xue Bao; 2015 Mar; 50(3):278-83. PubMed ID: 26118105 [TBL] [Abstract][Full Text] [Related]
87. The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding. Henriksen BS; Curtis ME; Fillmore N; Cardon BR; Thomson DM; Hancock CR Diabetol Metab Syndr; 2013; 5():29. PubMed ID: 23725555 [TBL] [Abstract][Full Text] [Related]
88. Effects of Ligustrum robustum (Rxob.) Blume extract on the quality of peanut and palm oils during storage and frying process. Gao HX; Chen N; He Q; Shi B; Yu ZL; Zeng WC J Food Sci; 2022 Oct; 87(10):4504-4521. PubMed ID: 36124403 [TBL] [Abstract][Full Text] [Related]
89. Inhibitory Activity of Compounds Isolated from Ligustrum robustum (Roxb.) Against HepG2 Liver Cancer Cells: Isocubein and 4-(2-Acetoxyethyl)phenol as Potential Candidates. Nong TAT; Le TTH; Vu VT; Nguyen MQ; Can DQH; Dong THY; Nguyen TPT; Hoang VH; Nguyen PH Chem Biodivers; 2024 Oct; 21(10):e202401065. PubMed ID: 39004876 [TBL] [Abstract][Full Text] [Related]
90. Chemical Constituents from the Leaves of Lu SH; Zuo HJ; Huang J; Li WN; Huang JL; Li XX Molecules; 2023 Jan; 28(1):. PubMed ID: 36615556 [TBL] [Abstract][Full Text] [Related]
91. Antidyslipidemic activity of hot-water extracts from leaves of Cinnamomum osmophloeum Kaneh. Lin TY; Liao JW; Chang ST; Wang SY Phytother Res; 2011 Sep; 25(9):1317-22. PubMed ID: 21308822 [TBL] [Abstract][Full Text] [Related]
92. Preventive effect of total glycosides from Ligustri Lucidi Fructus against nonalcoholic fatty liver in mice. Yang N; Zhang Y; Guo J Z Naturforsch C J Biosci; 2015 Sep; 70(9-10):237-41. PubMed ID: 26501160 [TBL] [Abstract][Full Text] [Related]
93. Ulmus macrocarpa Hance modulates lipid metabolism in hyperlipidemia via activation of AMPK pathway. Han HJ; Song X; Yadav D; Hwang MS; Lee JH; Lee CH; Kim TH; Lee JJ; Kwon J PLoS One; 2019; 14(5):e0217112. PubMed ID: 31120956 [TBL] [Abstract][Full Text] [Related]
94. Monoterpenoid Glycosides from the Leaves of Lu SH; Li XX; Zuo HJ; Li WN; Pan JP; Huang J Molecules; 2023 Oct; 28(21):. PubMed ID: 37959693 [No Abstract] [Full Text] [Related]
95. Study on structure characterization of pectin from the steamed ginseng and the inhibition activity of lipid accumulation in oleic acid-induced HepG2 cells. Jiao L; Li H; Li J; Bo L; Zhang X; Wu W; Chen C Int J Biol Macromol; 2020 Sep; 159():57-65. PubMed ID: 32339574 [TBL] [Abstract][Full Text] [Related]
96. Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. Wong IY; He ZD; Huang Y; Chen ZY J Agric Food Chem; 2001 Jun; 49(6):3113-9. PubMed ID: 11410017 [TBL] [Abstract][Full Text] [Related]
97. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Ha AW; Ying T; Kim WK Nutr Res Pract; 2015 Feb; 9(1):30-6. PubMed ID: 25671065 [TBL] [Abstract][Full Text] [Related]
98. Apocarotenoids from Equisetum debile Roxb. ex Vaucher regulate the lipid metabolism via the activation of the AMPK/ACC/SREBP-1c signaling pathway. Xu Q; Tian W; He S; Zhou M; Gao Y; Liu X; Sun C; Ding R; Wang G; Chen H Bioorg Chem; 2023 Sep; 138():106639. PubMed ID: 37276680 [TBL] [Abstract][Full Text] [Related]
99. Preparation of a functional yogurt with Ligustrum robustum (Rxob.) Blume and its action mechanism. Chen L; Chen N; He Q; Sun Q; Zeng WC J Food Sci; 2021 Mar; 86(3):1114-1123. PubMed ID: 33565611 [TBL] [Abstract][Full Text] [Related]
100. Mangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling. Li J; Liu M; Yu H; Wang W; Han L; Chen Q; Ruan J; Wen S; Zhang Y; Wang T Front Pharmacol; 2018; 9():201. PubMed ID: 29563875 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]