These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 294691)

  • 21. The stretching nonlinearity of the basilar membrane in a cochlear model.
    Borsboom MJ; Viergever MA
    Hear Res; 1980 Jun; 2(3-4):485-92. PubMed ID: 7410253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear potentials in the study of cochlear physiology.
    Siegel JH
    Scand Audiol Suppl; 1986; 25():35-47. PubMed ID: 3554482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cochlear delays and traveling waves: comments on 'Experimental look at cochlear mechanics'.
    Ruggero MA
    Audiology; 1994; 33(3):131-42. PubMed ID: 8042934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of outer hair cells in cochlear function.
    Dallos P
    Prog Clin Biol Res; 1985; 176():207-30. PubMed ID: 3889930
    [No Abstract]   [Full Text] [Related]  

  • 25. Intermodulation components in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1038-48. PubMed ID: 9265752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual origin of the cochlear microphonics: inner and outer hair cells.
    Karlan MS; Tonndorf J; Khanna SM
    Ann Otol Rhinol Laryngol; 1972 Oct; 81(5):696-704. PubMed ID: 4651113
    [No Abstract]   [Full Text] [Related]  

  • 27. The role of organ of Corti mass in passive cochlear tuning.
    de La Rochefoucauld O; Olson ES
    Biophys J; 2007 Nov; 93(10):3434-50. PubMed ID: 17905841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracochlear acoustic pressure measurements in guinea pigs.
    Dancer A; Franke R
    Scand Audiol Suppl; 1979; (9):111-7. PubMed ID: 294674
    [No Abstract]   [Full Text] [Related]  

  • 29. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.
    Jawadi Z; Applegate BE; Oghalai JS
    Methods Mol Biol; 2016; 1427():449-62. PubMed ID: 27259941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A traveling-wave amplifier model of the cochlea.
    Hubbard A
    Science; 1993 Jan; 259(5091):68-71. PubMed ID: 8418496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cochlear anatomy of the alligator lizard.
    Mulroy MJ
    Brain Behav Evol; 1974; 10(1-3):69-87. PubMed ID: 4141920
    [No Abstract]   [Full Text] [Related]  

  • 32. Need for a noninvasive technique to measure cochlear responses.
    Khanna SM; Figueroa LY
    Acta Otolaryngol Suppl; 1989; 467():19-26. PubMed ID: 2626929
    [No Abstract]   [Full Text] [Related]  

  • 33. Probing hair cell's mechano-transduction using two-tone suppression measurements.
    Zhou W; Nam JH
    Sci Rep; 2019 Mar; 9(1):4626. PubMed ID: 30874606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Five decades of research on cochlear mechanics.
    Zwislocki JJ
    J Acoust Soc Am; 1980 May; 67(5):1679-85. PubMed ID: 7372924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basilar membrane tension calculations for the gerbil cochlea.
    Naidu RC; Mountain DC
    J Acoust Soc Am; 2007 Feb; 121(2):994-1002. PubMed ID: 17348522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model and analysis for the nonlinear amplification of waves in the cochlea.
    Fessel K; Holmes MH
    Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evoked cochlear mechanical response and the auditory microstructure - evidence for a new element in cochlear mechanics.
    Kemp DT
    Scand Audiol Suppl; 1979; (9):35-47. PubMed ID: 294689
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of the cochlear microphonic on the limiting frequency of the mammalian ear.
    Iwasa KH; Sul B
    J Acoust Soc Am; 2008 Sep; 124(3):1607-12. PubMed ID: 19045652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy dispersive X-ray analysis of intracochlear ion shifts produced by anoxia.
    Bone RC; Ryan AF
    Laryngoscope; 1980 Jul; 90(7 Pt 1):1169-90. PubMed ID: 7392752
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.