These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 29469146)

  • 21. A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires.
    Chen N; Zhou J; Zhu G; Kang Q; Ji H; Zhang Y; Wang X; Peng L; Guo X; Lu C; Chen J; Feng X; Hou W
    Nanoscale; 2018 Feb; 10(8):3709-3719. PubMed ID: 29411819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density.
    Liu Y; Liu Q; Wang L; Yang X; Yang W; Zheng J; Hou H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4777-4786. PubMed ID: 31898452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
    Yang S; Zhang K
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH)
    Zhang Q; Xu W; Sun J; Pan Z; Zhao J; Wang X; Zhang J; Man P; Guo J; Zhou Z; He B; Zhang Z; Li Q; Zhang Y; Xu L; Yao Y
    Nano Lett; 2017 Dec; 17(12):7552-7560. PubMed ID: 29111747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.
    Saha S; Jana M; Khanra P; Samanta P; Koo H; Murmu NC; Kuila T
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14211-22. PubMed ID: 26068665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.
    Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F
    Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors.
    Tabassum H; Mahmood A; Wang Q; Xia W; Liang Z; Qiu B; Zhao R; Zou R
    Sci Rep; 2017 Feb; 7():43084. PubMed ID: 28240224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors.
    Kirubasankar B; Murugadoss V; Lin J; Ding T; Dong M; Liu H; Zhang J; Li T; Wang N; Guo Z; Angaiah S
    Nanoscale; 2018 Nov; 10(43):20414-20425. PubMed ID: 30377681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of NiCo
    Huang Y; Cheng M; Xiang Z; Cui Y
    R Soc Open Sci; 2018 Sep; 5(9):180953. PubMed ID: 30839698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.
    Lin TW; Dai CS; Hung KC
    Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO
    Sham Lal M; Lavanya T; Ramaprabhu S
    Beilstein J Nanotechnol; 2019; 10():781-793. PubMed ID: 31019865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Hierarchical Porous Ni
    Jin F; He X; Jiang J; Zhu W; Dai J; Yang H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors.
    Ruan Y; Lv L; Li Z; Wang C; Jiang J
    Nanoscale; 2017 Nov; 9(45):18032-18041. PubMed ID: 29131214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.
    Ghosh D; Das CK
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors.
    Kim H; Prasad Tiwari A; Mukhiya T; Kim HY
    J Colloid Interface Sci; 2021 Oct; 600():740-751. PubMed ID: 34052529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible Fe
    Jiang H; Niu H; Yang X; Sun Z; Li F; Wang Q; Qu F
    Chemistry; 2018 Jul; 24(42):10683-10688. PubMed ID: 29660802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design of Porous Structured Nickel Manganese Sulfides Hexagonal Sheets-in-Cage Structures as an Advanced Electrode Material for High-Performance Electrochemical Capacitors.
    Khalafallah D; Wu Z; Zhi M; Hong Z
    Chemistry; 2020 Feb; 26(10):2251-2262. PubMed ID: 31769082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rationally designed CuCo
    Zhu D; Sun X; Yu J; Liu Q; Liu J; Chen R; Zhang H; Li R; Yu J; Wang J
    J Colloid Interface Sci; 2019 Dec; 557():76-83. PubMed ID: 31514095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.