These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29469834)

  • 1. Near-infrared absorbers based on the heterostructures of two-dimensional materials.
    Davoodi F; Granpayeh N
    Appl Opt; 2018 Feb; 57(6):1358-1366. PubMed ID: 29469834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe
    Zhang K; Fang X; Wang Y; Wan Y; Song Q; Zhai W; Li Y; Ran G; Ye Y; Dai L
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5392-5398. PubMed ID: 28111947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Structure for an Independently Tunable Infrared Absorber Based on a Non-Concentric Graphene Nanodisk.
    Yu K; Shen P; Zhang W; Xiong X; Zhang J; Liu Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolayer-Graphene-Based Tunable Absorber in the Near-Infrared.
    Cao S; Wang Q; Gao X; Zhang S; Hong R; Zhang D
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.
    Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M
    Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region.
    Meng H; Wang L; Liu G; Xue X; Lin Q; Zhai X
    Appl Opt; 2017 Jul; 56(21):6022-6027. PubMed ID: 29047925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons.
    Chen D; Yang J; Zhang J; Huang J; Zhang Z
    Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions.
    Huang H; Xia H; Xie W; Guo Z; Li H; Xie D
    Sci Rep; 2018 Mar; 8(1):4183. PubMed ID: 29520032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials.
    Liu Y; Zhong R; Huang J; Lv Y; Han C; Liu S
    Opt Express; 2019 Mar; 27(5):7393-7404. PubMed ID: 30876304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable THz absorption in graphene-based heterostructures.
    Deng XH; Liu JT; Yuan J; Wang TB; Liu NH
    Opt Express; 2014 Dec; 22(24):30177-83. PubMed ID: 25606948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays.
    Xiao B; Gu M; Xiao S
    Appl Opt; 2017 Jul; 56(19):5458-5462. PubMed ID: 29047504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures.
    Zhao Y; Huang Q; Cai H; Lin X; He H; Ma T; Lu Y
    Opt Express; 2019 Feb; 27(4):5217-5229. PubMed ID: 30876123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel structure for tunable terahertz absorber based on graphene.
    Xu BZ; Gu CQ; Li Z; Niu ZY
    Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based dual-band independently tunable infrared absorber.
    Sun P; You C; Mahigir A; Liu T; Xia F; Kong W; Veronis G; Dowling JP; Dong L; Yun M
    Nanoscale; 2018 Aug; 10(33):15564-15570. PubMed ID: 30088500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption.
    Othman MA; Guclu C; Capolino F
    Opt Express; 2013 Mar; 21(6):7614-32. PubMed ID: 23546145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics.
    Soleymani A; Meymand RE; Granpayeh N
    Appl Opt; 2020 Mar; 59(9):2839-2848. PubMed ID: 32225833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.