These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29469862)

  • 1. Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials.
    Kieliszczyk M; Janaszek B; Tyszka-Zawadzka A; Szczepański P
    Appl Opt; 2018 Feb; 57(5):1182-1187. PubMed ID: 29469862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-based tunable hyperbolic microcavity.
    Dudek M; Kowerdziej R; Pianelli A; Parka J
    Sci Rep; 2021 Jan; 11(1):74. PubMed ID: 33420197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of gain/absorption in tunable hyperbolic metamaterials.
    Janaszek B; Tyszka-Zawadzka A; Szczepański P
    Opt Express; 2017 Jun; 25(12):13153-13162. PubMed ID: 28788851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies.
    Sun C; Dong Z; Si J; Deng X
    Opt Express; 2017 Jan; 25(2):1242-1250. PubMed ID: 28158008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of mid-infrared graphene hyperbolic metamaterials.
    Chang YC; Liu CH; Liu CH; Zhang S; Marder SR; Narimanov EE; Zhong Z; Norris TB
    Nat Commun; 2016 Feb; 7():10568. PubMed ID: 26843149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Optical Filters with Hyperbolic Metamaterials.
    Abdulkareem MA; López-Rayón F; Sosa-Sánchez CT; Bautista González RE; Arroyo Carrasco ML; Peña-Gomar M; Coello V; Téllez-Limón R
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials.
    Zeng C; Cui Y; Liu X
    Opt Express; 2015 Jan; 23(1):545-51. PubMed ID: 25835700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design.
    Lochbaum A; Dorodnyy A; Koch U; Koepfli SM; Volk S; Fedoryshyn Y; Wood V; Leuthold J
    Nano Lett; 2020 Jun; 20(6):4169-4176. PubMed ID: 32343585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically tunable directional subwavelength beam propagation based on photonic spin Hall effect in graphene-based hyperbolic metamaterials.
    Su Z; Wang Y; Shi H
    Opt Express; 2020 Apr; 28(8):11309-11318. PubMed ID: 32403645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices.
    Zhu B; Ren G; Zheng S; Lin Z; Jian S
    Opt Express; 2013 Jul; 21(14):17089-96. PubMed ID: 23938557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable beam steering enabled by graphene metamaterials.
    Orazbayev B; Beruete M; Khromova I
    Opt Express; 2016 Apr; 24(8):8848-61. PubMed ID: 27137318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based hyperbolic metamaterial as a switchable reflection modulator.
    Pianelli A; Kowerdziej R; Dudek M; Sielezin K; Olifierczuk M; Parka J
    Opt Express; 2020 Mar; 28(5):6708-6718. PubMed ID: 32225912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically tunable band stop filter enabled by the metal-graphene metamaterials.
    Liu Y; Zhong R; Lian Z; Bu C; Liu S
    Sci Rep; 2018 Feb; 8(1):2828. PubMed ID: 29434206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a novel infrared wavelength-tunable laser Mueller-matrix polarimetric scatterometer to measure nanostructured optical materials.
    Vap JC; Nauyoks SE; Benson MR; Marciniak MA
    Rev Sci Instrum; 2017 Oct; 88(10):103104. PubMed ID: 29092500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bulk Metamaterials Exhibiting Chemically Tunable Hyperbolic Responses.
    Lee M; Lee E; So S; Byun S; Son J; Ge B; Lee H; Park HS; Shim W; Pee JH; Min B; Cho SP; Shi Z; Noh TW; Rho J; Kim JY; Chung I
    J Am Chem Soc; 2021 Dec; 143(49):20725-20734. PubMed ID: 34783563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered surface Bloch waves in graphene-based hyperbolic metamaterials.
    Xiang Y; Guo J; Dai X; Wen S; Tang D
    Opt Express; 2014 Feb; 22(3):3054-62. PubMed ID: 24663596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz active spatial filtering through optically tunable hyperbolic metamaterials.
    Rizza C; Ciattoni A; Spinozzi E; Columbo L
    Opt Lett; 2012 Aug; 37(16):3345-7. PubMed ID: 23381252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials.
    Gric T; Hess O
    Opt Express; 2017 May; 25(10):11466-11476. PubMed ID: 28788712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal hyperbolic metamaterials.
    Guo Y; Jacob Z
    Opt Express; 2013 Jun; 21(12):15014-9. PubMed ID: 23787688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.
    McCrindle IJ; Grant J; Drysdale TD; Cumming DR
    Opt Express; 2013 Aug; 21(16):19142-52. PubMed ID: 23938829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.