These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 29470964)
1. Everything in Its Right Place: A Prefrontal-Midbrain Circuit for Contextual Fear Discrimination. Bukalo O; Holmes A Neuron; 2018 Feb; 97(4):732-733. PubMed ID: 29470964 [TBL] [Abstract][Full Text] [Related]
3. A distinct cortical code for socially learned threat. Silverstein SE; O'Sullivan R; Bukalo O; Pati D; Schaffer JA; Limoges A; Zsembik L; Yoshida T; O'Malley JJ; Paletzki RF; Lieberman AG; Nonaka M; Deisseroth K; Gerfen CR; Penzo MA; Kash TL; Holmes A Nature; 2024 Feb; 626(8001):1066-1072. PubMed ID: 38326610 [TBL] [Abstract][Full Text] [Related]
4. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. An X; Bandler R; Ongür D; Price JL J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273 [TBL] [Abstract][Full Text] [Related]
5. The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator. de Andrade Rufino R; Mota-Ortiz SR; De Lima MAX; Baldo MVC; Canteras NS Brain Struct Funct; 2019 May; 224(4):1537-1551. PubMed ID: 30847642 [TBL] [Abstract][Full Text] [Related]
6. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain. Cheriyan J; Sheets PL J Neurosci; 2018 May; 38(20):4829-4839. PubMed ID: 29695413 [TBL] [Abstract][Full Text] [Related]
7. Resting state hypothalamic and dorsomedial prefrontal cortical connectivity of the periaqueductal gray in cocaine addiction. Zhang S; Zhornitsky S; Wang W; Le TM; Dhingra I; Chen Y; Li CR Addict Biol; 2021 Jul; 26(4):e12989. PubMed ID: 33300238 [TBL] [Abstract][Full Text] [Related]
8. Calcitonin microinjection into the periaqueductal gray impairs contextual fear conditioning in the rat. Aboufatima R; Chait A; Dalal A; de Beaurepaire R Neurosci Lett; 1999 Nov; 275(2):101-4. PubMed ID: 10568509 [TBL] [Abstract][Full Text] [Related]
9. Fear and power-dominance drive motivation: neural representations and pathways mediating sensory and mnemonic inputs, and outputs to premotor structures. Sewards TV; Sewards MA Neurosci Biobehav Rev; 2002 Aug; 26(5):553-79. PubMed ID: 12367590 [TBL] [Abstract][Full Text] [Related]
10. Medial prefrontal pathways for the contextual regulation of extinguished fear in humans. Åhs F; Kragel PA; Zielinski DJ; Brady R; LaBar KS Neuroimage; 2015 Nov; 122():262-71. PubMed ID: 26220745 [TBL] [Abstract][Full Text] [Related]
11. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Walker P; Carrive P Neuroscience; 2003; 116(3):897-912. PubMed ID: 12573728 [TBL] [Abstract][Full Text] [Related]
12. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement. Halladay LR; Blair HT J Neurophysiol; 2015 Aug; 114(2):793-807. PubMed ID: 25972588 [TBL] [Abstract][Full Text] [Related]
13. Functional activation of the periaqueductal gray matter during conditioned and unconditioned fear in guinea pigs confronted with the Boa constrictor constrictor snake. Paula BB; Vieira-Rasteli EB; Calvo F; Coimbra NC; Leite-Panissi CRA Braz J Med Biol Res; 2022; 55():e11542. PubMed ID: 35195195 [TBL] [Abstract][Full Text] [Related]
14. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Stubbendorff C; Hale E; Cassaday HJ; Bast T; Stevenson CW Psychopharmacology (Berl); 2019 Jun; 236(6):1771-1782. PubMed ID: 30656366 [TBL] [Abstract][Full Text] [Related]
15. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning. Arico C; Bagley EE; Carrive P; Assareh N; McNally GP Neurobiol Learn Mem; 2017 Oct; 144():186-197. PubMed ID: 28716712 [TBL] [Abstract][Full Text] [Related]
16. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors. Deng H; Xiao X; Wang Z J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137 [TBL] [Abstract][Full Text] [Related]
17. Brief optogenetic inhibition of rat lateral or ventrolateral periaqueductal gray augments the acquisition of Pavlovian fear conditioning. Assareh N; Bagley EE; Carrive P; McNally GP Behav Neurosci; 2017 Dec; 131(6):454-459. PubMed ID: 29083203 [TBL] [Abstract][Full Text] [Related]
18. Conditioned place aversion organized in the dorsal periaqueductal gray recruits the laterodorsal nucleus of the thalamus and the basolateral amygdala. Zanoveli JM; Ferreira-Netto C; Brandão ML Exp Neurol; 2007 Nov; 208(1):127-36. PubMed ID: 17900567 [TBL] [Abstract][Full Text] [Related]
19. Functional characteristics of the midbrain periaqueductal gray. Behbehani MM Prog Neurobiol; 1995 Aug; 46(6):575-605. PubMed ID: 8545545 [TBL] [Abstract][Full Text] [Related]
20. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis. Koutsikou S; Watson TC; Crook JJ; Leith JL; Lawrenson CL; Apps R; Lumb BM J Neurosci; 2015 Oct; 35(42):14132-47. PubMed ID: 26490855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]