BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29470964)

  • 1. Everything in Its Right Place: A Prefrontal-Midbrain Circuit for Contextual Fear Discrimination.
    Bukalo O; Holmes A
    Neuron; 2018 Feb; 97(4):732-733. PubMed ID: 29470964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination.
    Rozeske RR; Jercog D; Karalis N; Chaudun F; Khoder S; Girard D; Winke N; Herry C
    Neuron; 2018 Feb; 97(4):898-910.e6. PubMed ID: 29398355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A distinct cortical code for socially learned threat.
    Silverstein SE; O'Sullivan R; Bukalo O; Pati D; Schaffer JA; Limoges A; Zsembik L; Yoshida T; O'Malley JJ; Paletzki RF; Lieberman AG; Nonaka M; Deisseroth K; Gerfen CR; Penzo MA; Kash TL; Holmes A
    Nature; 2024 Feb; 626(8001):1066-1072. PubMed ID: 38326610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
    An X; Bandler R; Ongür D; Price JL
    J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator.
    de Andrade Rufino R; Mota-Ortiz SR; De Lima MAX; Baldo MVC; Canteras NS
    Brain Struct Funct; 2019 May; 224(4):1537-1551. PubMed ID: 30847642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain.
    Cheriyan J; Sheets PL
    J Neurosci; 2018 May; 38(20):4829-4839. PubMed ID: 29695413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting state hypothalamic and dorsomedial prefrontal cortical connectivity of the periaqueductal gray in cocaine addiction.
    Zhang S; Zhornitsky S; Wang W; Le TM; Dhingra I; Chen Y; Li CR
    Addict Biol; 2021 Jul; 26(4):e12989. PubMed ID: 33300238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcitonin microinjection into the periaqueductal gray impairs contextual fear conditioning in the rat.
    Aboufatima R; Chait A; Dalal A; de Beaurepaire R
    Neurosci Lett; 1999 Nov; 275(2):101-4. PubMed ID: 10568509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fear and power-dominance drive motivation: neural representations and pathways mediating sensory and mnemonic inputs, and outputs to premotor structures.
    Sewards TV; Sewards MA
    Neurosci Biobehav Rev; 2002 Aug; 26(5):553-79. PubMed ID: 12367590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medial prefrontal pathways for the contextual regulation of extinguished fear in humans.
    Åhs F; Kragel PA; Zielinski DJ; Brady R; LaBar KS
    Neuroimage; 2015 Nov; 122():262-71. PubMed ID: 26220745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery.
    Walker P; Carrive P
    Neuroscience; 2003; 116(3):897-912. PubMed ID: 12573728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement.
    Halladay LR; Blair HT
    J Neurophysiol; 2015 Aug; 114(2):793-807. PubMed ID: 25972588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional activation of the periaqueductal gray matter during conditioned and unconditioned fear in guinea pigs confronted with the Boa constrictor constrictor snake.
    Paula BB; Vieira-Rasteli EB; Calvo F; Coimbra NC; Leite-Panissi CRA
    Braz J Med Biol Res; 2022; 55():e11542. PubMed ID: 35195195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning.
    Stubbendorff C; Hale E; Cassaday HJ; Bast T; Stevenson CW
    Psychopharmacology (Berl); 2019 Jun; 236(6):1771-1782. PubMed ID: 30656366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.
    Arico C; Bagley EE; Carrive P; Assareh N; McNally GP
    Neurobiol Learn Mem; 2017 Oct; 144():186-197. PubMed ID: 28716712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors.
    Deng H; Xiao X; Wang Z
    J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief optogenetic inhibition of rat lateral or ventrolateral periaqueductal gray augments the acquisition of Pavlovian fear conditioning.
    Assareh N; Bagley EE; Carrive P; McNally GP
    Behav Neurosci; 2017 Dec; 131(6):454-459. PubMed ID: 29083203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditioned place aversion organized in the dorsal periaqueductal gray recruits the laterodorsal nucleus of the thalamus and the basolateral amygdala.
    Zanoveli JM; Ferreira-Netto C; Brandão ML
    Exp Neurol; 2007 Nov; 208(1):127-36. PubMed ID: 17900567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characteristics of the midbrain periaqueductal gray.
    Behbehani MM
    Prog Neurobiol; 1995 Aug; 46(6):575-605. PubMed ID: 8545545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis.
    Koutsikou S; Watson TC; Crook JJ; Leith JL; Lawrenson CL; Apps R; Lumb BM
    J Neurosci; 2015 Oct; 35(42):14132-47. PubMed ID: 26490855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.