These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
601 related articles for article (PubMed ID: 29471111)
1. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. Davoodi R; Moradi MH J Biomed Inform; 2018 Mar; 79():48-59. PubMed ID: 29471111 [TBL] [Abstract][Full Text] [Related]
2. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
3. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
4. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
5. ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU. Caicedo-Torres W; Gutierrez J J Biomed Inform; 2019 Oct; 98():103269. PubMed ID: 31430550 [TBL] [Abstract][Full Text] [Related]
6. A Deep-Ensemble-Level-Based Interpretable Takagi-Sugeno-Kang Fuzzy Classifier for Imbalanced Data. Wang G; Zhou T; Choi KS; Lu J IEEE Trans Cybern; 2022 May; 52(5):3805-3818. PubMed ID: 32946410 [TBL] [Abstract][Full Text] [Related]
7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
8. Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic. de Bruin JS; Adlassnig KP; Blacky A; Koller W Artif Intell Med; 2016 May; 69():33-41. PubMed ID: 27156053 [TBL] [Abstract][Full Text] [Related]
9. Constructing a fuzzy rule-based system using the ILFN network and Genetic Algorithm. Yen GG; Meesad P Int J Neural Syst; 2001 Oct; 11(5):427-43. PubMed ID: 11709810 [TBL] [Abstract][Full Text] [Related]
10. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
11. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604 [TBL] [Abstract][Full Text] [Related]
12. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
13. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine. Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease. Maheshwari S; Agarwal A; Shukla A; Tiwari R Biomed Tech (Berl); 2020 Aug; 65(4):435-446. PubMed ID: 31846424 [TBL] [Abstract][Full Text] [Related]
15. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945 [TBL] [Abstract][Full Text] [Related]
17. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique. Singh A; Quek C; Cho SY IEEE Trans Neural Netw; 2008 Apr; 19(4):625-44. PubMed ID: 18390309 [TBL] [Abstract][Full Text] [Related]
18. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
19. Prediction of survival of ICU patients using computational intelligence. Hsieh YZ; Su MC; Wang CH; Wang PC Comput Biol Med; 2014 Apr; 47():13-9. PubMed ID: 24508564 [TBL] [Abstract][Full Text] [Related]
20. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]