These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29471367)

  • 41. PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity.
    de Bruijn S; Zhao T; Muiño JM; Schranz EM; Angenent GC; Kaufmann K
    BMC Plant Biol; 2018 Dec; 18(1):368. PubMed ID: 30577806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genetic framework for fruit patterning in Arabidopsis thaliana.
    Dinneny JR; Weigel D; Yanofsky MF
    Development; 2005 Nov; 132(21):4687-96. PubMed ID: 16192305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant reference genes for development and stress response studies.
    Joseph JT; Poolakkalody NJ; Shah JM
    J Biosci; 2018 Mar; 43(1):173-187. PubMed ID: 29485125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brunfelsia (Solanaceae): a genus evenly divided between South America and radiations on Cuba and other Antillean islands.
    Filipowicz N; Renner SS
    Mol Phylogenet Evol; 2012 Jul; 64(1):1-11. PubMed ID: 22425729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family.
    Busch A; Horn S; Mühlhausen A; Mummenhoff K; Zachgo S
    Mol Biol Evol; 2012 Apr; 29(4):1241-54. PubMed ID: 22135189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brassicaceae flowers: diversity amid uniformity.
    Nikolov LA
    J Exp Bot; 2019 May; 70(10):2623-2635. PubMed ID: 30824938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family.
    Phukela B; Geeta R; Das S; Tandon R
    Mol Genet Genomics; 2020 May; 295(3):563-577. PubMed ID: 31912236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.).
    Yano R; Nonaka S; Ezura H
    Plant Cell Physiol; 2018 Jan; 59(1):e4. PubMed ID: 29216378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redundant CArG Box
    Sehra B; Franks RG
    Front Plant Sci; 2017; 8():1712. PubMed ID: 29085379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multispecies transcriptomes reveal core fruit development genes.
    Rajewski A; Maheepala DC; Le J; Litt A
    Front Plant Sci; 2022; 13():954929. PubMed ID: 36407608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development.
    Poupin MJ; Federici F; Medina C; Matus JT; Timmermann T; Arce-Johnson P
    Gene; 2007 Dec; 404(1-2):10-24. PubMed ID: 17920788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consensus Coexpression Network Analysis Identifies Key Regulators of Flower and Fruit Development in Wild Strawberry.
    Shahan R; Zawora C; Wight H; Sittmann J; Wang W; Mount SM; Liu Z
    Plant Physiol; 2018 Sep; 178(1):202-216. PubMed ID: 29991484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema.
    Lenser T; Tarkowská D; Novák O; Wilhelmsson PKI; Bennett T; Rensing SA; Strnad M; Theißen G
    Plant J; 2018 Apr; 94(2):352-371. PubMed ID: 29418033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolutionary dynamics of genes controlling floral development.
    Kramer EM; Hall JC
    Curr Opin Plant Biol; 2005 Feb; 8(1):13-8. PubMed ID: 15653394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium.
    Reyes-Olalde JI; Zúñiga-Mayo VM; Serwatowska J; Chavez Montes RA; Lozano-Sotomayor P; Herrera-Ubaldo H; Gonzalez-Aguilera KL; Ballester P; Ripoll JJ; Ezquer I; Paolo D; Heyl A; Colombo L; Yanofsky MF; Ferrandiz C; Marsch-Martínez N; de Folter S
    PLoS Genet; 2017 Apr; 13(4):e1006726. PubMed ID: 28388635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity.
    Kivivirta KI; Herbert D; Roessner C; de Folter S; Marsch-Martinez N; Becker A
    Plant Physiol; 2021 Apr; 185(3):1076-1090. PubMed ID: 33793890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fruit development and ripening.
    Seymour GB; Østergaard L; Chapman NH; Knapp S; Martin C
    Annu Rev Plant Biol; 2013; 64():219-41. PubMed ID: 23394500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.