These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 29471568)
1. The Receptor Interacting Protein Kinases in the Liver. Dara L Semin Liver Dis; 2018 Feb; 38(1):73-86. PubMed ID: 29471568 [TBL] [Abstract][Full Text] [Related]
2. Knockdown of RIPK1 Markedly Exacerbates Murine Immune-Mediated Liver Injury through Massive Apoptosis of Hepatocytes, Independent of Necroptosis and Inhibition of NF-κB. Suda J; Dara L; Yang L; Aghajan M; Song Y; Kaplowitz N; Liu ZX J Immunol; 2016 Oct; 197(8):3120-3129. PubMed ID: 27605011 [TBL] [Abstract][Full Text] [Related]
3. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Newton K Trends Cell Biol; 2015 Jun; 25(6):347-53. PubMed ID: 25662614 [TBL] [Abstract][Full Text] [Related]
4. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death. Guida N; Laudati G; Serani A; Mascolo L; Molinaro P; Montuori P; Di Renzo G; Canzoniero LMT; Formisano L Biochem Pharmacol; 2017 Oct; 142():229-241. PubMed ID: 28676433 [TBL] [Abstract][Full Text] [Related]
5. The Inflammatory Signal Adaptor RIPK3: Functions Beyond Necroptosis. Moriwaki K; Chan FK Int Rev Cell Mol Biol; 2017; 328():253-275. PubMed ID: 28069136 [TBL] [Abstract][Full Text] [Related]
6. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Xu Y; Gao H; Hu Y; Fang Y; Qi C; Huang J; Cai X; Wu H; Ding X; Zhang Z Exp Cell Res; 2019 Sep; 382(2):111463. PubMed ID: 31247189 [TBL] [Abstract][Full Text] [Related]
7. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Newton K; Dugger DL; Wickliffe KE; Kapoor N; de Almagro MC; Vucic D; Komuves L; Ferrando RE; French DM; Webster J; Roose-Girma M; Warming S; Dixit VM Science; 2014 Mar; 343(6177):1357-60. PubMed ID: 24557836 [TBL] [Abstract][Full Text] [Related]
9. Necroptosis in development and diseases. Shan B; Pan H; Najafov A; Yuan J Genes Dev; 2018 Mar; 32(5-6):327-340. PubMed ID: 29593066 [TBL] [Abstract][Full Text] [Related]
10. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Newton K; Dugger DL; Maltzman A; Greve JM; Hedehus M; Martin-McNulty B; Carano RA; Cao TC; van Bruggen N; Bernstein L; Lee WP; Wu X; DeVoss J; Zhang J; Jeet S; Peng I; McKenzie BS; Roose-Girma M; Caplazi P; Diehl L; Webster JD; Vucic D Cell Death Differ; 2016 Sep; 23(9):1565-76. PubMed ID: 27177019 [TBL] [Abstract][Full Text] [Related]
11. RIPK1 inhibits ZBP1-driven necroptosis during development. Newton K; Wickliffe KE; Maltzman A; Dugger DL; Strasser A; Pham VC; Lill JR; Roose-Girma M; Warming S; Solon M; Ngu H; Webster JD; Dixit VM Nature; 2016 Dec; 540(7631):129-133. PubMed ID: 27819682 [TBL] [Abstract][Full Text] [Related]
12. Programmed necrosis and necroptosis signalling. Feoktistova M; Leverkus M FEBS J; 2015 Jan; 282(1):19-31. PubMed ID: 25327580 [TBL] [Abstract][Full Text] [Related]
13. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Dara L; Johnson H; Suda J; Win S; Gaarde W; Han D; Kaplowitz N Hepatology; 2015 Dec; 62(6):1847-57. PubMed ID: 26077809 [TBL] [Abstract][Full Text] [Related]
14. Necroptosis and Inflammation. Newton K; Manning G Annu Rev Biochem; 2016 Jun; 85():743-63. PubMed ID: 26865533 [TBL] [Abstract][Full Text] [Related]
15. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Wegner KW; Saleh D; Degterev A Trends Pharmacol Sci; 2017 Mar; 38(3):202-225. PubMed ID: 28126382 [TBL] [Abstract][Full Text] [Related]
16. Necroptosis signaling in liver diseases: An update. Saeed WK; Jun DW; Jang K; Koh DH Pharmacol Res; 2019 Oct; 148():104439. PubMed ID: 31476369 [TBL] [Abstract][Full Text] [Related]
17. Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation. Shindo R; Kakehashi H; Okumura K; Kumagai Y; Nakano H Biochem Biophys Res Commun; 2013 Jun; 436(2):212-6. PubMed ID: 23727581 [TBL] [Abstract][Full Text] [Related]
19. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8. Vo DK; Urano Y; Takabe W; Saito Y; Noguchi N Steroids; 2015 Jul; 99(Pt B):230-7. PubMed ID: 25697054 [TBL] [Abstract][Full Text] [Related]
20. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. Kearney CJ; Cullen SP; Clancy D; Martin SJ FEBS J; 2014 Nov; 281(21):4921-34. PubMed ID: 25195660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]