These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29471646)

  • 1. Computing energy levels of CH
    Zhao Z; Chen J; Zhang Z; Zhang DH; Wang XG; Carrington T; Gatti F
    J Chem Phys; 2018 Feb; 148(7):074113. PubMed ID: 29471646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Applications to methane and fluoromethane.
    Zhao Z; Chen J; Zhang Z; Zhang DH; Lauvergnat D; Gatti F
    J Chem Phys; 2016 May; 144(20):204302. PubMed ID: 27250301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results.
    Yu HG
    J Chem Phys; 2004 Feb; 120(5):2270-84. PubMed ID: 15268366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH
    Zhang Z; Gatti F; Zhang DH
    J Chem Phys; 2020 May; 152(20):201101. PubMed ID: 32486690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations.
    Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT
    Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane.
    Wang XG; Carrington T
    J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward breaking the curse of dimensionality in (ro)vibrational computations of molecular systems with multiple large-amplitude motions.
    Avila G; Mátyus E
    J Chem Phys; 2019 May; 150(17):174107. PubMed ID: 31067897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules.
    Mátyus E; Simunek J; Császár AG
    J Chem Phys; 2009 Aug; 131(7):074106. PubMed ID: 19708731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion.
    Yu HG
    J Chem Phys; 2016 Aug; 145(8):084109. PubMed ID: 27586906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general formulation of the quasiclassical trajectory method for reduced-dimensionality reaction dynamics calculations.
    Nagy T; Vikár A; Lendvay G
    Phys Chem Chem Phys; 2018 May; 20(19):13224-13240. PubMed ID: 29722776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice.
    Szalay V
    J Chem Phys; 2017 Mar; 146(12):124107. PubMed ID: 28388108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational energy levels of CH5(+).
    Wang XG; Carrington T
    J Chem Phys; 2008 Dec; 129(23):234102. PubMed ID: 19102521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converged quantum dynamics calculations of vibrational energies of CH4 and CH3D using an ab initio potential.
    Yu HG
    J Chem Phys; 2004 Oct; 121(13):6334-40. PubMed ID: 15446929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H
    Wang XG; Carrington T
    J Chem Phys; 2017 Mar; 146(10):104105. PubMed ID: 28298098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules.
    Yu HG
    J Chem Phys; 2015 Jan; 142(4):044106. PubMed ID: 25637968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term Lanczos eigensolver.
    Tremblay JC; Carrington T
    J Chem Phys; 2006 Sep; 125(9):094311. PubMed ID: 16965084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the calculation of rovibrational spectra of five-atom molecules with three identical atoms by using a C3upsilonG6 symmetry-adapted grid: applied to CH3D and CHD3.
    Wang XG; Carrington T
    J Chem Phys; 2005 Oct; 123(15):154303. PubMed ID: 16252944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene.
    Thomas PS; Carrington T; Agarwal J; Schaefer HF
    J Chem Phys; 2018 Aug; 149(6):064108. PubMed ID: 30111157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra.
    Avila G; Carrington T
    J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using experimental data and a contracted basis Lanczos method to determine an accurate methane potential energy surface from a least squares optimization.
    Wang XG; Carrington T
    J Chem Phys; 2014 Oct; 141(15):154106. PubMed ID: 25338880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.