These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 29471801)

  • 1. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Reconstruction of High-Resolution 3D Models of Large Chromosomes.
    Trieu T; Oluwadare O; Cheng J
    Sci Rep; 2019 Mar; 9(1):4971. PubMed ID: 30899036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes.
    Abbas A; He X; Niu J; Zhou B; Zhu G; Ma T; Song J; Gao J; Zhang MQ; Zeng J
    Nat Commun; 2019 May; 10(1):2049. PubMed ID: 31053705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending partial haplotypes to full genome haplotypes using chromosome conformation capture data.
    Ben-Elazar S; Chor B; Yakhini Z
    Bioinformatics; 2016 Sep; 32(17):i559-i566. PubMed ID: 27587675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D genome reconstruction from chromosomal contacts.
    Lesne A; Riposo J; Roger P; Cournac A; Mozziconacci J
    Nat Methods; 2014 Nov; 11(11):1141-3. PubMed ID: 25240436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data.
    Trieu T; Cheng J
    Nucleic Acids Res; 2014 Apr; 42(7):e52. PubMed ID: 24465004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data.
    Nowotny J; Ahmed S; Xu L; Oluwadare O; Chen H; Hensley N; Trieu T; Cao R; Cheng J
    BMC Bioinformatics; 2015 Oct; 16():338. PubMed ID: 26493399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring the three-dimensional structures of the X-chromosome during X-inactivation.
    Zhu H; Wang N; Sun JZ; Pandey RB; Wang Z
    Math Biosci Eng; 2019 Aug; 16(6):7384-7404. PubMed ID: 31698618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.