BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 29472233)

  • 1. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms.
    Meher AK; Spinosa M; Davis JP; Pope N; Laubach VE; Su G; Serbulea V; Leitinger N; Ailawadi G; Upchurch GR
    Arterioscler Thromb Vasc Biol; 2018 Apr; 38(4):843-853. PubMed ID: 29472233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model.
    Spinosa M; Su G; Salmon MD; Lu G; Cullen JM; Fashandi AZ; Hawkins RB; Montgomery W; Meher AK; Conte MS; Sharma AK; Ailawadi G; Upchurch GR
    J Vasc Surg; 2018 Dec; 68(6S):93S-103S. PubMed ID: 30470363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and pharmacologic disruption of interleukin-1β signaling inhibits experimental aortic aneurysm formation.
    Johnston WF; Salmon M; Su G; Lu G; Stone ML; Zhao Y; Owens GK; Upchurch GR; Ailawadi G
    Arterioscler Thromb Vasc Biol; 2013 Feb; 33(2):294-304. PubMed ID: 23288154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease-Associated Abdominal Aortic Aneurysm.
    Wakita D; Kurashima Y; Crother TR; Noval Rivas M; Lee Y; Chen S; Fury W; Bai Y; Wagner S; Li D; Lehman T; Fishbein MC; Hoffman HM; Shah PK; Shimada K; Arditi M
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):886-97. PubMed ID: 26941015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation.
    Yan H; Zhou HF; Akk A; Hu Y; Springer LE; Ennis TL; Pham CTN
    Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1660-1669. PubMed ID: 27283739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-1β (Interleukin-1β) and TNF-α (Tumor Necrosis Factor-α) Impact Abdominal Aortic Aneurysm Formation by Differential Effects on Macrophage Polarization.
    Batra R; Suh MK; Carson JS; Dale MA; Meisinger TM; Fitzgerald M; Opperman PJ; Luo J; Pipinos II; Xiong W; Baxter BT
    Arterioscler Thromb Vasc Biol; 2018 Feb; 38(2):457-463. PubMed ID: 29217508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development.
    He L; Fu Y; Deng J; Shen Y; Wang Y; Yu F; Xie N; Chen Z; Hong T; Peng X; Li Q; Zhou J; Han J; Wang Y; Xi J; Kong W
    Arterioscler Thromb Vasc Biol; 2018 Jul; 38(7):1616-1631. PubMed ID: 29853563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation.
    Ding Y; Li X; Zhou M; Cai L; Tang H; Xie T; Shi Z; Fu W
    Vascul Pharmacol; 2021 Feb; 136():106818. PubMed ID: 33227452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Kinin B2 Receptor Signaling Controls Aortic Dilatation and Rupture in the Angiotensin II-Infused Apolipoprotein E-Deficient Mouse.
    Moran CS; Rush CM; Dougan T; Jose RJ; Biros E; Norman PE; Gera L; Golledge J
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):898-907. PubMed ID: 26966276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release of ascorbic acid from gelatin hydrogel attenuates abdominal aortic aneurysm formation in rat experimental abdominal aortic aneurysm model.
    Tanaka A; Hasegawa T; Morimoto K; Bao W; Yu J; Okita Y; Tabata Y; Okada K
    J Vasc Surg; 2014 Sep; 60(3):749-58. PubMed ID: 24011462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemokine (C-X-C motif) receptor 4 blockade by AMD3100 inhibits experimental abdominal aortic aneurysm expansion through anti-inflammatory effects.
    Michineau S; Franck G; Wagner-Ballon O; Dai J; Allaire E; Gervais M
    Arterioscler Thromb Vasc Biol; 2014 Aug; 34(8):1747-55. PubMed ID: 24876351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone citrullination as a novel biomarker and target to inhibit progression of abdominal aortic aneurysms.
    Eilenberg W; Zagrapan B; Bleichert S; Ibrahim N; Knöbl V; Brandau A; Martelanz L; Grasl MT; Hayden H; Nawrozi P; Rajic R; Häusler C; Potolidis A; Schirwani N; Scheuba A; Klopf J; Teubenbacher P; Weigl MP; Kirchweger P; Beitzke D; Stiglbauer-Tscholakoff A; Panzenböck A; Lang I; Mauracher LM; Hell L; Pabinger I; Bailey MA; Scott DJA; Maegdefessel L; Busch A; Huk I; Neumayer C; Brostjan C
    Transl Res; 2021 Jul; 233():32-46. PubMed ID: 33571683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of transglutaminase type 2 for aortic wall protection in a rat abdominal aortic aneurysm formation.
    Munezane T; Hasegawa T; Suritala ; Tanaka A; Okada K; Okita Y
    J Vasc Surg; 2010 Oct; 52(4):967-74. PubMed ID: 20615646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice.
    Tarín C; Fernandez-Garcia CE; Burillo E; Pastor-Vargas C; Llamas-Granda P; Castejón B; Ramos-Mozo P; Torres-Fonseca MM; Berger T; Mak TW; Egido J; Blanco-Colio LM; Martín-Ventura JL
    Cardiovasc Res; 2016 Aug; 111(3):262-73. PubMed ID: 27229458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms.
    Sharma AK; Salmon MD; Lu G; Su G; Pope NH; Smith JR; Weiss ML; Upchurch GR
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):908-18. PubMed ID: 26988591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD95-ligand contributes to abdominal aortic aneurysm progression by modulating inflammation.
    Liu Z; Fitzgerald M; Meisinger T; Batra R; Suh M; Greene H; Penrice AJ; Sun L; Baxter BT; Xiong W
    Cardiovasc Res; 2019 Mar; 115(4):807-818. PubMed ID: 30428004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation.
    Isoda K; Akita K; Kitamura K; Sato-Okabayashi Y; Kadoguchi T; Isobe S; Ohtomo F; Sano M; Shimada K; Iwakura Y; Daida H
    Int J Cardiol; 2018 Nov; 270():221-227. PubMed ID: 29884291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGFβ (Transforming Growth Factor-β) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm.
    Lareyre F; Clément M; Raffort J; Pohlod S; Patel M; Esposito B; Master L; Finigan A; Vandestienne M; Stergiopulos N; Taleb S; Trachet B; Mallat Z
    Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2171-2181. PubMed ID: 28912363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.
    Usui F; Shirasuna K; Kimura H; Tatsumi K; Kawashima A; Karasawa T; Yoshimura K; Aoki H; Tsutsui H; Noda T; Sagara J; Taniguchi S; Takahashi M
    Arterioscler Thromb Vasc Biol; 2015 Jan; 35(1):127-36. PubMed ID: 25378412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress.
    Qin Y; Wang Y; Liu O; Jia L; Fang W; Du J; Wei Y
    Eur J Vasc Endovasc Surg; 2017 Mar; 53(3):337-345. PubMed ID: 27889204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.