BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29472309)

  • 1. Photosensitive Alternative Splicing of the Circadian Clock Gene
    Tapanainen R; Parker DJ; Kankare M
    G3 (Bethesda); 2018 Mar; 8(4):1291-1297. PubMed ID: 29472309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes.
    Kauranen H; Ala-Honkola O; Kankare M; Hoikkala A
    J Insect Physiol; 2016 Jun; 89():9-18. PubMed ID: 26993661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensitive alternative splicing senses and mediates temperature adaptation in
    Martin Anduaga A; Evantal N; Patop IL; Bartok O; Weiss R; Kadener S
    Elife; 2019 Nov; 8():. PubMed ID: 31702556
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Foley LE; Ling J; Joshi R; Evantal N; Kadener S; Emery P
    Elife; 2019 Nov; 8():. PubMed ID: 31702555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille.
    Poikela N; Tyukmaeva V; Hoikkala A; Kankare M
    BMC Ecol Evol; 2021 Jun; 21(1):117. PubMed ID: 34112109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A methyl transferase links the circadian clock to the regulation of alternative splicing.
    Sanchez SE; Petrillo E; Beckwith EJ; Zhang X; Rugnone ML; Hernando CE; Cuevas JC; Godoy Herz MA; Depetris-Chauvin A; Simpson CG; Brown JW; Cerdán PD; Borevitz JO; Mas P; Ceriani MF; Kornblihtt AR; Yanovsky MJ
    Nature; 2010 Nov; 468(7320):112-6. PubMed ID: 20962777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timeless in animal circadian clocks and beyond.
    Cai YD; Chiu JC
    FEBS J; 2022 Nov; 289(21):6559-6575. PubMed ID: 34699674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How a circadian clock adapts to seasonal decreases in temperature and day length.
    Majercak J; Sidote D; Hardin PE; Edery I
    Neuron; 1999 Sep; 24(1):219-30. PubMed ID: 10677039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C.
    Majercak J; Chen WF; Edery I
    Mol Cell Biol; 2004 Apr; 24(8):3359-72. PubMed ID: 15060157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis.
    Kwon YJ; Park MJ; Kim SG; Baldwin IT; Park CM
    BMC Plant Biol; 2014 May; 14():136. PubMed ID: 24885185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.
    Boothroyd CE; Wijnen H; Naef F; Saez L; Young MW
    PLoS Genet; 2007 Apr; 3(4):e54. PubMed ID: 17411344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula.
    Shen Y; Wu X; Liu D; Song S; Liu D; Wang H
    Biochem Biophys Res Commun; 2016 May; 474(2):271-276. PubMed ID: 27086112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation.
    Low KH; Lim C; Ko HW; Edery I
    Neuron; 2008 Dec; 60(6):1054-67. PubMed ID: 19109911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closely Related Fruit Fly Species Living at Different Latitudes Diverge in Their Circadian Clock Anatomy and Rhythmic Behavior.
    Beauchamp M; Bertolini E; Deppisch P; Steubing J; Menegazzi P; Helfrich-Förster C
    J Biol Rhythms; 2018 Dec; 33(6):602-613. PubMed ID: 30203704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock.
    Kotwica-Rolinska J; Chodáková L; Smýkal V; Damulewicz M; Provazník J; Wu BC; Hejníková M; Chvalová D; Doležel D
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34893879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A natural timeless polymorphism allowing circadian clock synchronization in "white nights".
    Lamaze A; Chen C; Leleux S; Xu M; George R; Stanewsky R
    Nat Commun; 2022 Mar; 13(1):1724. PubMed ID: 35361756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection.
    Yang Y; Edery I
    PLoS Genet; 2018 Sep; 14(9):e1007612. PubMed ID: 30180162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of
    Deppisch P; Prutscher JM; Pegoraro M; Tauber E; Wegener C; Helfrich-Förster C
    J Biol Rhythms; 2022 Apr; 37(2):185-201. PubMed ID: 35301885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana.
    Kauranen H; Menegazzi P; Costa R; Helfrich-Förster C; Kankainen A; Hoikkala A
    J Biol Rhythms; 2012 Oct; 27(5):377-87. PubMed ID: 23010660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-day siesta in natural populations of D. melanogaster from Africa exhibits an altitudinal cline and is regulated by splicing of a thermosensitive intron in the period clock gene.
    Cao W; Edery I
    BMC Evol Biol; 2017 Jan; 17(1):32. PubMed ID: 28114910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.