These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 29472540)
1. Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility. Behera V; Evans P; Face CJ; Hamagami N; Sankaranarayanan L; Keller CA; Giardine B; Tan K; Hardison RC; Shi J; Blobel GA Nat Commun; 2018 Feb; 9(1):782. PubMed ID: 29472540 [TBL] [Abstract][Full Text] [Related]
2. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
3. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. Kumar S; Bucher P BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008 [TBL] [Abstract][Full Text] [Related]
4. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Reddy TE; Gertz J; Pauli F; Kucera KS; Varley KE; Newberry KM; Marinov GK; Mortazavi A; Williams BA; Song L; Crawford GE; Wold B; Willard HF; Myers RM Genome Res; 2012 May; 22(5):860-9. PubMed ID: 22300769 [TBL] [Abstract][Full Text] [Related]
5. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
10. Modeling co-occupancy of transcription factors using chromatin features. Liu L; Zhao W; Zhou X Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Tagmentation-Based Detection of ChIP/ATAC Signal with Bisulfite Sequencing. Lhoumaud P; Skok J Methods Mol Biol; 2021; 2351():337-352. PubMed ID: 34382199 [TBL] [Abstract][Full Text] [Related]
12. Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data. Luo K; Zhong J; Safi A; Hong LK; Tewari AK; Song L; Reddy TE; Ma L; Crawford GE; Hartemink AJ Genome Res; 2022 Jun; 32(6):1183-1198. PubMed ID: 35609992 [TBL] [Abstract][Full Text] [Related]
13. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990 [TBL] [Abstract][Full Text] [Related]
14. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Brdlik CM; Niu W; Snyder M Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441 [TBL] [Abstract][Full Text] [Related]
15. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. Zhang L; Xue G; Liu J; Li Q; Wang Y BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100 [TBL] [Abstract][Full Text] [Related]
16. Epigenetic dissection of human blood group genes reveals regulatory elements and detailed characteristics of KEL and four other loci. Wu PC; McGowan EC; Lee YQ; Ghosh S; Hansson J; Olsson ML Transfusion; 2024 Jun; 64(6):1083-1096. PubMed ID: 38644556 [TBL] [Abstract][Full Text] [Related]
17. Cooperative binding of transcription factors in the human genome. Nie Y; Shu C; Sun X Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834 [TBL] [Abstract][Full Text] [Related]