These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29472558)

  • 1. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell.
    Chen Y; Gao X; Johnson LR; Bruce PG
    Nat Commun; 2018 Feb; 9(1):767. PubMed ID: 29472558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li-O
    Bawol PP; Reinsberg P; Bondue CJ; Abd-El-Latif AA; Königshoven P; Baltruschat H
    Phys Chem Chem Phys; 2018 Aug; 20(33):21447-21456. PubMed ID: 30087964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen.
    Kwak WJ; Kim H; Petit YK; Leypold C; Nguyen TT; Mahne N; Redfern P; Curtiss LA; Jung HG; Borisov SM; Freunberger SA; Sun YK
    Nat Commun; 2019 Mar; 10(1):1380. PubMed ID: 30914647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries.
    Zhang XP; Sun YY; Sun Z; Yang CS; Zhang T
    Nat Commun; 2019 Aug; 10(1):3543. PubMed ID: 31391469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium-Oxygen Batteries.
    Wu S; Qiao Y; Deng H; He Y; Zhou H
    J Phys Chem Lett; 2018 Dec; 9(23):6761-6766. PubMed ID: 30421927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel aqueous lithium-oxygen cell based on the oxygen-peroxide redox couple.
    Matsui M; Wada A; Matsuda Y; Yamamoto O; Takeda Y; Imanishi N
    Chem Commun (Camb); 2015 Feb; 51(15):3189-92. PubMed ID: 25603771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries.
    Ryu WH; Gittleson FS; Thomsen JM; Li J; Schwab MJ; Brudvig GW; Taylor AD
    Nat Commun; 2016 Oct; 7():12925. PubMed ID: 27759005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.
    Yu M; Ren X; Ma L; Wu Y
    Nat Commun; 2014 Oct; 5():5111. PubMed ID: 25277368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes.
    Wu S; Qiao Y; Yang S; Ishida M; He P; Zhou H
    Nat Commun; 2017 Jun; 8():15607. PubMed ID: 28585527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size effect of lithium peroxide on charging performance of Li-O2 batteries.
    Hu Y; Han X; Cheng F; Zhao Q; Hu Z; Chen J
    Nanoscale; 2014 Jan; 6(1):177-80. PubMed ID: 24219997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of nanometric passivating films on cathodes for Li-air batteries.
    Adams BD; Black R; Radtke C; Williams Z; Mehdi BL; Browning ND; Nazar LF
    ACS Nano; 2014 Dec; 8(12):12483-93. PubMed ID: 25364863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries.
    Dutta A; Wong RA; Park W; Yamanaka K; Ohta T; Jung Y; Byon HR
    Nat Commun; 2018 Feb; 9(1):680. PubMed ID: 29445206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium-air battery.
    Zhu YG; Goh FWT; Yan R; Wu S; Adams S; Wang Q
    Phys Chem Chem Phys; 2018 Nov; 20(44):27930-27936. PubMed ID: 30379163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability.
    Kundu D; Black R; Adams B; Harrison K; Zavadil K; Nazar LF
    J Phys Chem Lett; 2015 Jun; 6(12):2252-8. PubMed ID: 26266600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.