BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29472573)

  • 1. Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system.
    Shi X; Wu T; M Cole C; K Devaraj N; Joseph S
    Sci Rep; 2018 Feb; 8(1):3488. PubMed ID: 29472573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology.
    Garamella J; Marshall R; Rustad M; Noireaux V
    ACS Synth Biol; 2016 Apr; 5(4):344-55. PubMed ID: 26818434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology.
    Sun ZZ; Hayes CA; Shin J; Caschera F; Murray RM; Noireaux V
    J Vis Exp; 2013 Sep; (79):e50762. PubMed ID: 24084388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP.
    Griffith KL; Grossman AD
    Mol Microbiol; 2008 Nov; 70(4):1012-25. PubMed ID: 18811726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.
    Moore SJ; Lai HE; Needham H; Polizzi KM; Freemont PS
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28139884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.
    Amor AJ; Schmitz KR; Sello JK; Baker TA; Sauer RT
    ACS Chem Biol; 2016 Jun; 11(6):1552-1560. PubMed ID: 27003103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
    Zhou Y; Gottesman S; Hoskins JR; Maurizi MR; Wickner S
    Genes Dev; 2001 Mar; 15(5):627-37. PubMed ID: 11238382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering controllable protein degradation.
    McGinness KE; Baker TA; Sauer RT
    Mol Cell; 2006 Jun; 22(5):701-7. PubMed ID: 16762842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Uniform Benchmark for Testing SsrA-Derived Degrons in the
    Klimecka MM; Antosiewicz A; Izert MA; Szybowska PE; Twardowski PK; Delaunay C; Górna MW
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A split protease-E. coli ClpXP system quantifies protein-protein interactions in Escherichia coli cells.
    Wang S; Zhang F; Mei M; Wang T; Yun Y; Yang S; Zhang G; Yi L
    Commun Biol; 2021 Jul; 4(1):841. PubMed ID: 34230602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell.
    Caschera F; Noireaux V
    Artif Life; 2016; 22(2):185-95. PubMed ID: 26934095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems.
    Takahashi MK; Chappell J; Hayes CA; Sun ZZ; Kim J; Singhal V; Spring KJ; Al-Khabouri S; Fall CP; Noireaux V; Murray RM; Lucks JB
    ACS Synth Biol; 2015 May; 4(5):503-15. PubMed ID: 24621257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.
    Sun ZZ; Yeung E; Hayes CA; Noireaux V; Murray RM
    ACS Synth Biol; 2014 Jun; 3(6):387-97. PubMed ID: 24303785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease.
    Bohn C; Binet E; Bouloc P
    Mol Genet Genomics; 2002 Jan; 266(5):827-31. PubMed ID: 11810257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.
    Maglica Z; Kolygo K; Weber-Ban E
    Structure; 2009 Apr; 17(4):508-16. PubMed ID: 19368884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A region at the C-terminus of the Escherichia coli global transcription factor FNR negatively mediates its degradation by the ClpXP protease.
    Pan Q; Shan Y; Yan A
    Biochemistry; 2012 Jun; 51(25):5061-71. PubMed ID: 22656860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system.
    Caschera F; Noireaux V
    Biochimie; 2014 Apr; 99():162-8. PubMed ID: 24326247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease.
    Tomoyasu T; Takaya A; Isogai E; Yamamoto T
    Mol Microbiol; 2003 Apr; 48(2):443-52. PubMed ID: 12675803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP.
    Hansen J; Gregersen N; Bross P
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1160-70. PubMed ID: 15978546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.