These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29472729)
1. Behavior of Weak Polyelectrolyte Brushes in Mixed Salt Solutions. Willott JD; Murdoch TJ; Leermakers FAM; de Vos WM Macromolecules; 2018 Feb; 51(3):1198-1206. PubMed ID: 29472729 [TBL] [Abstract][Full Text] [Related]
2. Effects of counterion fluctuations in a polyelectrolyte brush. Santangelo CD; Lau AW Eur Phys J E Soft Matter; 2004 Apr; 13(4):335-44. PubMed ID: 15170532 [TBL] [Abstract][Full Text] [Related]
7. Effect of counterions on the swelling of spherical polyelectrolyte brushes. Mei Y; Ballauff M Eur Phys J E Soft Matter; 2005 Mar; 16(3):341-9. PubMed ID: 15685435 [TBL] [Abstract][Full Text] [Related]
8. On the origins of the salt-concentration-dependent instability and lateral nanoscale heterogeneities of weak polyelectrolyte brushes: gradient brush experiment and Flory-type theoretical analysis. Hur J; Witte KN; Sun W; Won YY Langmuir; 2010 Feb; 26(3):2021-34. PubMed ID: 20099924 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains. Sandberg DJ; Carrillo JM; Dobrynin AV Langmuir; 2007 Dec; 23(25):12716-28. PubMed ID: 17973411 [TBL] [Abstract][Full Text] [Related]
10. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel. Pial TH; Das S J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705 [TBL] [Abstract][Full Text] [Related]
11. Combined Experimental and Theoretical Study of Weak Polyelectrolyte Brushes in Salt Mixtures. Willott JD; Humphreys BA; Webber GB; Wanless EJ; de Vos WM Langmuir; 2019 Feb; 35(7):2709-2718. PubMed ID: 30661354 [TBL] [Abstract][Full Text] [Related]
13. Structure of polyelectrolyte brushes subject to normal electric fields. Ho YF; Shendruk TN; Slater GW; Hsiao PY Langmuir; 2013 Feb; 29(7):2359-70. PubMed ID: 23347275 [TBL] [Abstract][Full Text] [Related]
14. Particles decorated by an ionizable thermoresponsive polymer brush in water: experiments and self-consistent field modeling. Alves SP; Pinheiro JP; Farinha JP; Leermakers FA J Phys Chem B; 2014 Mar; 118(11):3192-206. PubMed ID: 24559318 [TBL] [Abstract][Full Text] [Related]
15. Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Yu J; Jackson NE; Xu X; Morgenstern Y; Kaufman Y; Ruths M; de Pablo JJ; Tirrell M Science; 2018 Jun; 360(6396):1434-1438. PubMed ID: 29954973 [TBL] [Abstract][Full Text] [Related]
16. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient? Smook LA; de Beer S Langmuir; 2024 Feb; 40(8):4142-4151. PubMed ID: 38355408 [TBL] [Abstract][Full Text] [Related]
17. Spherical polyelectrolyte brushes: comparison between annealed and quenched brushes. Guo X; Ballauff M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051406. PubMed ID: 11735922 [TBL] [Abstract][Full Text] [Related]
18. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Hao QH; Xia G; Tan HG; Chen EQ; Yang S Phys Chem Chem Phys; 2018 Nov; 20(41):26542-26551. PubMed ID: 30306970 [TBL] [Abstract][Full Text] [Related]