BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29473732)

  • 1. Innovative Cryopreservation Process Using a Modified Core/Shell Cell-Printing with a Microfluidic System for Cell-Laden Scaffolds.
    Lee JY; Koo Y; Kim G
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9257-9268. PubMed ID: 29473732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration.
    Ahn S; Lee H; Kim G
    Carbohydr Polym; 2013 Oct; 98(1):936-42. PubMed ID: 23987431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.
    Kim YB; Lee H; Kim GH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration.
    Raja N; Yun HS
    J Mater Chem B; 2016 Jul; 4(27):4707-4716. PubMed ID: 32263243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink.
    Yeo MG; Kim GH
    Biofabrication; 2017 Apr; 9(2):025004. PubMed ID: 28402968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryopreservation of 3D Bioprinted Scaffolds with Temperature-Controlled-Cryoprinting.
    Warburton L; Rubinsky B
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure.
    Lee J; Yeo M; Kim W; Koo Y; Kim GH
    Int J Biol Macromol; 2018 Apr; 110():497-503. PubMed ID: 29054525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues.
    Kim WJ; Yun HS; Kim GH
    Sci Rep; 2017 Jun; 7(1):3181. PubMed ID: 28600538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen/alginate scaffolds comprising core (PCL)-shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities.
    Kim Y; Kim G
    J Mater Chem B; 2013 Jul; 1(25):3185-3194. PubMed ID: 32260919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures.
    Ahn SH; Lee HJ; Lee JS; Yoon H; Chun W; Kim GH
    Sci Rep; 2015 Aug; 5():13427. PubMed ID: 26293341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.
    Lee H; Kim G
    J Colloid Interface Sci; 2014 Sep; 430():315-25. PubMed ID: 24974244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core/shell Printing Scaffolds For Tissue Engineering Of Tubular Structures.
    Milojević M; Vihar B; Banović L; Miško M; Gradišnik L; Zidarič T; Maver U
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microfluidic Device to Fabricate One-Step Cell Bead-Laden Hydrogel Struts for Tissue Engineering.
    Kim J; Lee H; Jin EJ; Jo Y; Kang BE; Ryu D; Kim G
    Small; 2022 Jan; 18(1):e2106487. PubMed ID: 34854561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal Villi Model with Blood Capillaries Fabricated Using Collagen-Based Bioink and Dual-Cell-Printing Process.
    Kim W; Kim G
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41185-41196. PubMed ID: 30419164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage.
    Gryshkov O; Mutsenko V; Tarusin D; Khayyat D; Naujok O; Riabchenko E; Nemirovska Y; Danilov A; Petrenko AY; Glasmacher B
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.