These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29473732)

  • 21. Fabrication of self-assembled core-sheath microfibers via formulation of alginate-based bioinks.
    Chae S; Lee H; Kim G
    Carbohydr Polym; 2023 Apr; 305():120557. PubMed ID: 36737203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Millimeter-thick 3D tissues constructed by densely cellularized core-shell microfluidic bioprinting.
    Nie M; Nagata S; Oda H; Takeuchi S
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 37059089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering.
    Chang HK; Yang DH; Ha MY; Kim HJ; Kim CH; Kim SH; Choi JW; Chun HJ
    Carbohydr Polym; 2022 Jul; 287():119328. PubMed ID: 35422276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells.
    Lee HJ; Kim YB; Ahn SH; Lee JS; Jang CH; Yoon H; Chun W; Kim GH
    Adv Healthc Mater; 2015 Jun; 4(9):1359-68. PubMed ID: 25874573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue.
    Lee J; Kim G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35801-35811. PubMed ID: 30260631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryogenic Coaxial Printing for 3D Shell/Core Tissue Engineering Scaffold with Polymeric Shell and Drug-Loaded Core.
    Liu T; Yang B; Tian W; Zhang X; Wu B
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New strategy for enhancing in situ cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing.
    Koo Y; Kim G
    Biofabrication; 2016 May; 8(2):025010. PubMed ID: 27203798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.
    Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P
    Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Stand-Alone Cell-Laden Collagen Vascular Network Scaffolds Using Fugitive Pattern-Based Printing-Then-Casting Approach.
    Jin Y; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28361-28371. PubMed ID: 30048116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A direct cell printing supplemented with low-temperature processing method for obtaining highly porous three-dimensional cell-laden scaffolds.
    Ahn S; Lee H; Lee EJ; Kim G
    J Mater Chem B; 2014 May; 2(18):2773-2782. PubMed ID: 32261442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration.
    Ahn SH; Lee HJ; Kim GH
    Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs.
    Arai K; Murata D; Takao S; Verissiomo AR; Nakayama K
    PLoS One; 2020; 15(4):e0230428. PubMed ID: 32240195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.
    Kesti M; Müller M; Becher J; Schnabelrauch M; D'Este M; Eglin D; Zenobi-Wong M
    Acta Biomater; 2015 Jan; 11():162-72. PubMed ID: 25260606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.