These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29473737)

  • 1. Optofluidic Sensor for Inline Hemolysis Detection on Whole Blood.
    Zhou C; Keshavarz Hedayati M; Zhu X; Nielsen F; Levy U; Kristensen A
    ACS Sens; 2018 Apr; 3(4):784-791. PubMed ID: 29473737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis-free blood plasma separation.
    Son JH; Lee SH; Hong S; Park SM; Lee J; Dickey AM; Lee LP
    Lab Chip; 2014 Jul; 14(13):2287-92. PubMed ID: 24825250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portable optofluidic absorption flow analyzer for quantitative malaria diagnosis from whole blood.
    Banoth E; Kasula VK; Gorthi SS
    Appl Opt; 2016 Oct; 55(30):8637-8643. PubMed ID: 27828146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point-of-care hemolysis detection in blood gas specimens directly at the emergency department.
    Duhalde H; Skogö J; Karlsson M
    Scand J Clin Lab Invest; 2019 Sep; 79(5):283-287. PubMed ID: 31066302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel In-Line Hemolysis Detection on a Blood Gas Analyzer and Impact on Whole Blood Potassium Results.
    Balasubramanian S; McDowell EJ; Laryea ET; Blankenstein G; Pamidi PVA; Winkler AM; Nichols JH
    Clin Chem; 2024 Sep; ():. PubMed ID: 39293997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the bias in red blood cell hemolysis measurement using several analytical approaches.
    Acker JP; M Croteau I; Yi QL
    Clin Chim Acta; 2012 Nov; 413(21-22):1746-52. PubMed ID: 22750731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand-held plasma isolation device for point-of-care testing.
    Bercich R; Bernhard J; Larson K; Lindsey J
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):759-62. PubMed ID: 21118761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Undetected In Vitro Hemolysis or Sample Contamination on Patient Care and Outcomes in Point-of-Care Testing: A Retrospective Study.
    O'Hara M; Wheatley EG; Kazmierczak SC
    J Appl Lab Med; 2020 Mar; 5(2):332-341. PubMed ID: 32445387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mobile phone-based approach to detection of hemolysis.
    Archibong E; Konnaiyan KR; Kaplan H; Pyayt A
    Biosens Bioelectron; 2017 Feb; 88():204-209. PubMed ID: 27567707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties.
    Neun BW; Ilinskaya AN; Dobrovolskaia MA
    Methods Mol Biol; 2018; 1682():91-102. PubMed ID: 29039096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemolysis and blood gas analysis: it's time for a change!
    Casati M; Intra J; Rossi W; Giacobone C; Brivio R
    Scand J Clin Lab Invest; 2022 Apr; 82(2):138-142. PubMed ID: 35152829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolysis Detection in Sub-Microliter Volumes of Blood Plasma.
    Azhar M; Galgalkar S; Chakraborty I; Mehta K; M S R; Prabhu V; Ledden D
    IEEE Trans Biomed Eng; 2020 May; 67(5):1243-1252. PubMed ID: 31403404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method to monitor hemolysis in real time.
    Van Buren T; Arwatz G; Smits AJ
    Sci Rep; 2020 Mar; 10(1):5101. PubMed ID: 32198369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic single-cell absorption flow analyzer for point-of-care diagnosis of malaria.
    Banoth E; Kasula VK; Jagannadh VK; Gorthi SS
    J Biophotonics; 2016 Jun; 9(6):610-8. PubMed ID: 26192714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.
    Yaraş YS; Gündüz AB; Sağlam G; Ölçer S; Civitçi F; Baris İ; Yaralioğlu G; Urey H
    J Biomed Opt; 2017 Nov; 22(11):1-8. PubMed ID: 29127692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood separation on microfluidic paper-based analytical devices.
    Songjaroen T; Dungchai W; Chailapakul O; Henry CS; Laiwattanapaisal W
    Lab Chip; 2012 Sep; 12(18):3392-8. PubMed ID: 22782449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of technical and assay variation on reporting of hemolysis in stored red blood cell products.
    Almizraq RJ; Yi QL; Acker JP;
    Clin Chim Acta; 2017 May; 468():90-97. PubMed ID: 28228350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-patient measurements of methemoglobin, oxygen saturation, and total hemoglobin: evaluation of a new instrument for adult and neonatal intensive care.
    Gong AK
    Crit Care Med; 1995 Jan; 23(1):193-201. PubMed ID: 7528117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.