BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29473744)

  • 1. Chemo- and Regioselective Lysine Modification on Native Proteins.
    Matos MJ; Oliveira BL; Martínez-Sáez N; Guerreiro A; Cal PMSD; Bertoldo J; Maneiro M; Perkins E; Howard J; Deery MJ; Chalker JM; Corzana F; Jiménez-Osés G; Bernardes GJL
    J Am Chem Soc; 2018 Mar; 140(11):4004-4017. PubMed ID: 29473744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine Bioconjugation on Native Albumin with a Sulfonyl Acrylate Reagent.
    Matos MJ; Jiménez-Osés G; Bernardes GJL
    Methods Mol Biol; 2019; 2033():25-37. PubMed ID: 31332745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins.
    Adusumalli SR; Rawale DG; Thakur K; Purushottam L; Reddy NC; Kalra N; Shukla S; Rai V
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10332-10336. PubMed ID: 32171045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents.
    Bernardim B; Cal PM; Matos MJ; Oliveira BL; Martínez-Sáez N; Albuquerque IS; Perkins E; Corzana F; Burtoloso AC; Jiménez-Osés G; Bernardes GJ
    Nat Commun; 2016 Oct; 7():13128. PubMed ID: 27782215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins.
    Tantipanjaporn A; Wong MK
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective lysine modification of native peptides via aza-Michael addition.
    Chen H; Huang R; Li Z; Zhu W; Chen J; Zhan Y; Jiang B
    Org Biomol Chem; 2017 Sep; 15(35):7339-7345. PubMed ID: 28853470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling.
    Chen X; Muthoosamy K; Pfisterer A; Neumann B; Weil T
    Bioconjug Chem; 2012 Mar; 23(3):500-8. PubMed ID: 22339664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Behavior-Inspired Linchpin-Directed Catalysis for Traceless Precision Labeling of Lysine in Native Proteins.
    Thakur K; T K S; Singh SK; V R; Rawale DG; Adusumalli SR; Kalra N; Shukla S; Mishra RK; Rai V
    Bioconjug Chem; 2022 Dec; 33(12):2370-2380. PubMed ID: 36383773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates.
    Haque M; Forte N; Baker JR
    Chem Commun (Camb); 2021 Oct; 57(82):10689-10702. PubMed ID: 34570125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.
    Pham GH; Ou W; Bursulaya B; DiDonato M; Herath A; Jin Y; Hao X; Loren J; Spraggon G; Brock A; Uno T; Geierstanger BH; Cellitti SE
    Chembiochem; 2018 Apr; 19(8):799-804. PubMed ID: 29388367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and irreversible antibody-cysteine bioconjugation using carbonylacrylic reagents.
    Bernardim B; Matos MJ; Ferhati X; Compañón I; Guerreiro A; Akkapeddi P; Burtoloso ACB; Jiménez-Osés G; Corzana F; Bernardes GJL
    Nat Protoc; 2019 Jan; 14(1):86-99. PubMed ID: 30470819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins.
    Bellucci JJ; Bhattacharyya J; Chilkoti A
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):441-5. PubMed ID: 25363491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traceless cysteine-linchpin enables precision engineering of lysine in native proteins.
    Reddy NC; Molla R; Joshi PN; T K S; Basu I; Kawadkar J; Kalra N; Mishra RK; Chakrabarty S; Shukla S; Rai V
    Nat Commun; 2022 Oct; 13(1):6038. PubMed ID: 36229616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity and Selectivity Principles in Native Protein Bioconjugation.
    Adakkattil R; Thakur K; Rai V
    Chem Rec; 2021 Aug; 21(8):1941-1956. PubMed ID: 34184826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization.
    Andersson LK; Caspersson M; Baltzer L
    Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Selective Labeling of Native Proteins by a Multicomponent Approach.
    Chilamari M; Purushottam L; Rai V
    Chemistry; 2017 Mar; 23(16):3819-3823. PubMed ID: 28177162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective chemical protein modification.
    Spicer CD; Davis BG
    Nat Commun; 2014 Sep; 5():4740. PubMed ID: 25190082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology.
    Adusumalli SR; Rawale DG; Singh U; Tripathi P; Paul R; Kalra N; Mishra RK; Shukla S; Rai V
    J Am Chem Soc; 2018 Nov; 140(44):15114-15123. PubMed ID: 30336012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linchpin-directed precise labeling of lysine in native proteins, purification, and analysis.
    Bal A; Singh SK; Kashyap T; Rai V
    Methods Enzymol; 2022; 675():383-396. PubMed ID: 36220278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-selective installation of an electrophilic handle on proteins for bioconjugation.
    Lee B; Sun S; Jiménez-Moreno E; Neves AA; Bernardes GJL
    Bioorg Med Chem; 2018 Jul; 26(11):3060-3064. PubMed ID: 29482952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.