These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29474001)
1. Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines. Lee SE; Song J; Bösl K; Müller AC; Vitko D; Bennett KL; Superti-Furga G; Pandey A; Kandasamy RK; Kim MS Proteomics; 2018 Apr; 18(8):e1700386. PubMed ID: 29474001 [TBL] [Abstract][Full Text] [Related]
2. An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Flower CT; Chen L; Jung HJ; Raghuram V; Knepper MA; Yang CR Physiol Genomics; 2020 Oct; 52(10):485-491. PubMed ID: 32866085 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of proteins encoded by chromosome 12 as part of chromosome-centric human proteome project. Manda SS; Nirujogi RS; Pinto SM; Kim MS; Datta KK; Sirdeshmukh R; Prasad TS; Thongboonkerd V; Pandey A; Gowda H J Proteome Res; 2014 Jul; 13(7):3166-77. PubMed ID: 24960282 [TBL] [Abstract][Full Text] [Related]
4. Proteogenomic Study beyond Chromosome 9: New Insight into Expressed Variant Proteome and Transcriptome in Human Lung Adenocarcinoma Tissues. Kim YI; Lee J; Choi YJ; Seo J; Park J; Lee SY; Cho JY J Proteome Res; 2015 Dec; 14(12):5007-16. PubMed ID: 26584007 [TBL] [Abstract][Full Text] [Related]
5. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate. Park GW; Hwang H; Kim KH; Lee JY; Lee HK; Park JY; Ji ES; Park SR; Yates JR; Kwon KH; Park YM; Lee HJ; Paik YK; Kim JY; Yoo JS J Proteome Res; 2016 Nov; 15(11):4082-4090. PubMed ID: 27537616 [TBL] [Abstract][Full Text] [Related]
9. Probing the Missing Human Proteome: A Computational Perspective. Kumar D; Jain A; Dash D J Proteome Res; 2015 Dec; 14(12):4949-58. PubMed ID: 26407240 [TBL] [Abstract][Full Text] [Related]
10. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117 [TBL] [Abstract][Full Text] [Related]
12. Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins. Zhang Y; Li Q; Wu F; Zhou R; Qi Y; Su N; Chen L; Xu S; Jiang T; Zhang C; Cheng G; Chen X; Kong D; Wang Y; Zhang T; Zi J; Wei W; Gao Y; Zhen B; Xiong Z; Wu S; Yang P; Wang Q; Wen B; He F; Xu P; Liu S J Proteome Res; 2015 Sep; 14(9):3583-94. PubMed ID: 26282447 [TBL] [Abstract][Full Text] [Related]
13. JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells. Li Y; Wang X; Cho JH; Shaw TI; Wu Z; Bai B; Wang H; Zhou S; Beach TG; Wu G; Zhang J; Peng J J Proteome Res; 2016 Jul; 15(7):2309-20. PubMed ID: 27225868 [TBL] [Abstract][Full Text] [Related]
14. Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project. Jumeau F; Com E; Lane L; Duek P; Lagarrigue M; Lavigne R; Guillot L; Rondel K; Gateau A; Melaine N; Guével B; Sergeant N; Mitchell V; Pineau C J Proteome Res; 2015 Sep; 14(9):3606-20. PubMed ID: 26168773 [TBL] [Abstract][Full Text] [Related]
15. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project. Díez P; Droste C; Dégano RM; González-Muñoz M; Ibarrola N; Pérez-Andrés M; Garin-Muga A; Segura V; Marko-Varga G; LaBaer J; Orfao A; Corrales FJ; De Las Rivas J; Fuentes M J Proteome Res; 2015 Sep; 14(9):3530-40. PubMed ID: 26216070 [TBL] [Abstract][Full Text] [Related]
16. Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14. Carapito C; Lane L; Benama M; Opsomer A; Mouton-Barbosa E; Garrigues L; Gonzalez de Peredo A; Burel A; Bruley C; Gateau A; Bouyssié D; Jaquinod M; Cianferani S; Burlet-Schiltz O; Van Dorsselaer A; Garin J; Vandenbrouck Y J Proteome Res; 2015 Sep; 14(9):3621-34. PubMed ID: 26132440 [TBL] [Abstract][Full Text] [Related]
17. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. Shiromizu T; Adachi J; Watanabe S; Murakami T; Kuga T; Muraoka S; Tomonaga T J Proteome Res; 2013 Jun; 12(6):2414-21. PubMed ID: 23312004 [TBL] [Abstract][Full Text] [Related]
18. The influence of transcript assembly on the proteogenomics discovery of microproteins. Ma J; Saghatelian A; Shokhirev MN PLoS One; 2018; 13(3):e0194518. PubMed ID: 29584760 [TBL] [Abstract][Full Text] [Related]
19. GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project. Jeong SK; Hancock WS; Paik YK J Proteome Res; 2015 Sep; 14(9):3710-9. PubMed ID: 26272709 [TBL] [Abstract][Full Text] [Related]
20. A tool for integrating genetic and mass spectrometry-based peptide data: Proteogenomics Viewer: PV: A genome browser-like tool, which includes MS data visualization and peptide identification parameters. Kroll JE; da Silva VL; de Souza SJ; de Souza GA Bioessays; 2017 Jul; 39(7):. PubMed ID: 28582591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]