BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29474147)

  • 1. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.
    Adams F; Nolte F; Colton J; De Beer J; Weddig L
    J Food Prot; 2018 Mar; 81(3):444-455. PubMed ID: 29474147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse.
    Economou V; Brett MM; Papadopoulou C; Frillingos S; Nichols T
    Food Addit Contam; 2007 Aug; 24(8):820-32. PubMed ID: 17613069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat resistance of histamine-producing bacteria in irradiated tuna loins.
    Enache E; Kataoka A; Black DG; Weddig L; Hayman M; Bjornsdottir-Butler K
    J Food Prot; 2013 Sep; 76(9):1608-14. PubMed ID: 23992506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histamine development and bacterial diversity in microbially-challenged tonggol (Thunnus tonggol) under temperature abuse during canning manufacture.
    Hongpattarakere T; Buntin N; Nuylert A
    J Food Sci Technol; 2016 Jan; 53(1):245-56. PubMed ID: 26787946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of frozen storage on survival of Staphylococcus aureus and enterotoxin production in precooked tuna meat.
    Wu X; Su YC
    J Food Sci; 2014 Aug; 79(8):M1554-9. PubMed ID: 25039601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Storage Temperature on the Outgrowth and Toxin Production of Staphylococcus aureus in Freeze-Thawed Precooked Tuna Meat.
    Kataoka A; Enache E; Napier C; Hayman M; Weddig L
    J Food Prot; 2016 Apr; 79(4):620-7. PubMed ID: 27052867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autolytic degradation of skipjack tuna during heating as affected by initial quality and processing conditions.
    Stagg NJ; Amato PM; Giesbrecht F; Lanier TC
    J Food Sci; 2012 Feb; 77(2):C149-55. PubMed ID: 22250749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of on-board and dockside handling on the formation of biogenic amines in mahimahi (Coryphaena hippurus), skipjack tuna (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares).
    Staruszkiewicz WF; Barnett JD; Rogers PL; Benner RA; Wong LL; Cook J
    J Food Prot; 2004 Jan; 67(1):134-41. PubMed ID: 14717363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant histamine formation in tuna (Thunnus albacares) at 2 degrees C--effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria.
    Emborg J; Laursen BG; Dalgaard P
    Int J Food Microbiol; 2005 Jun; 101(3):263-79. PubMed ID: 15925710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histamine and cadaverine production by bacteria isolated from fresh and frozen albacore (Thunnus alalunga).
    Ben-Gigirey B; Vieites Baaptista de Sousa JM; Villa TG; Barros-Velazquez J
    J Food Prot; 1999 Aug; 62(8):933-9. PubMed ID: 10456749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Resistance of Histidine Decarboxylase from Gram-Negative Histamine-Producing Bacteria in Seafood.
    Bjornsdottir-Butler K; Bencsath FA; McCarthy S; Benner RA
    J Food Prot; 2017 Aug; 80(8):1273-1279. PubMed ID: 28696146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical, Microstructural, and Microbiological Properties of Skipjack Tuna (Katsuwonus pelamis) After High-Pressure Processing.
    Jiranuntakul W; Nakwiang N; Berends P; Kasemsuwan T; Saetung T; Devahastin S
    J Food Sci; 2018 Sep; 83(9):2324-2336. PubMed ID: 30106476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage.
    Ben-Gigirey B; Vieites Baptista de Sousa JM; Villa TG; Barros-Velazquez J
    J Food Prot; 1998 May; 61(5):608-15. PubMed ID: 9709235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Histamine in Canned Fish Samples (Tuna, Sardine, Kilka, and Mackerel) from Markets in Tehran.
    Peivasteh-Roudsari L; Rahmani A; Shariatifar N; Tajdar-Oranj B; Mazaheri M; Sadighara P; Khaneghah AM
    J Food Prot; 2020 Jan; 83(1):136-141. PubMed ID: 31855616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photobacterium angustum and Photobacterium kishitanii, Psychrotrophic High-Level Histamine-Producing Bacteria Indigenous to Tuna.
    Bjornsdottir-Butler K; McCarthy SA; Dunlap PV; Benner RA
    Appl Environ Microbiol; 2016 Jan; 82(7):2167-2176. PubMed ID: 26826233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in free amino acids content in albacore (Thunnus alalunga) muscle during thermal processing.
    Perez-Martin RI; Franco JM; Aubourg S; Gallardo JM
    Z Lebensm Unters Forsch; 1988 Nov; 187(5):432-5. PubMed ID: 3206942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Histamine in Fresh and Canned Tuna Steaks Stored under Different Experimental Temperature Conditions.
    Altafini A; Roncada P; Guerrini A; Sonfack GM; Accurso D; Caprai E
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Storage Time and Temperature Effects on Histamine Production in Tuna Salad Preparations.
    McCarthy S; Bjornsdottir-Butler K; Benner R
    J Food Prot; 2015 Jul; 78(7):1343-9. PubMed ID: 26197286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring volatile and nonvolatile amines in dried and salted roes of tuna (Thunnus thynnus L.) during manufacture and storage.
    Periago MJ; Rodrigo J; Ros G; Rodríguez-Jérez JJ; Hernández-Herrero M
    J Food Prot; 2003 Feb; 66(2):335-40. PubMed ID: 12597499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and identification of histamine-producing bacteria associated with harvesting and processing mahimahi and yellowfin tuna.
    Allen DG; Green DP; Bolton GE; Jaykus LA; Cope WG
    J Food Prot; 2005 Aug; 68(8):1676-82. PubMed ID: 21132978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.