These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 29474218)

  • 1. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Individual Cochlear Implant Recipient Speech Perception With the Output Signal to Noise Ratio Metric.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2020; 41(5):1270-1281. PubMed ID: 32053546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Investigation of Audibility Effects on Cochlear Implant Speech Perception Prediction.
    Watkins GD; Swanson BA; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1801-1804. PubMed ID: 31946246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation of the Effect of AGC Gain on the Output Signal to Noise Ratio in Cochlear Implant Sound Processing.
    Watkins GD; Swanson BA; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1206-1209. PubMed ID: 30440606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound-direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user.
    Van Hoesel R; Ramsden R; Odriscoll M
    Ear Hear; 2002 Apr; 23(2):137-49. PubMed ID: 11951849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems.
    Firszt JB; Holden LK; Skinner MW; Tobey EA; Peterson A; Gaggl W; Runge-Samuelson CL; Wackym PA
    Ear Hear; 2004 Aug; 25(4):375-87. PubMed ID: 15292777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligibility prediction for speech mixed with white Gaussian noise at low signal-to-noise ratios.
    Graetzer S; Hopkins C
    J Acoust Soc Am; 2021 Feb; 149(2):1346. PubMed ID: 33639794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination and Comparison of Sound Coding Strategies Using Cochlear Implant Simulation With Mandarin Speech.
    Huang EH; Wu CM; Lin HC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2407-2416. PubMed ID: 34767509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multicentre clinical evaluation of paediatric cochlear implant users upgrading to the Nucleus(®) 6 system.
    Plasmans A; Rushbrooke E; Moran M; Spence C; Theuwis L; Zarowski A; Offeciers E; Atkinson B; McGovern J; Dornan D; Leigh J; Kaicer A; Hollow R; Martelli L; Looi V; Nel E; Del Dot J; Cowan R; Mauger SJ
    Int J Pediatr Otorhinolaryngol; 2016 Apr; 83():193-9. PubMed ID: 26968076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the applicability and optimization of the Dutch matrix sentence test for use with cochlear implant users.
    Theelen-van den Hoek FL; Houben R; Dreschler WA
    Int J Audiol; 2014 Nov; 53(11):817-28. PubMed ID: 24975235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of noise suppression on intelligibility. II: An attempt to validate physical metrics.
    Hilkhuysen G; Gaubitch N; Brookes M; Huckvale M
    J Acoust Soc Am; 2014 Jan; 135(1):439-50. PubMed ID: 24437784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ideal mask-based speech enhancement algorithms for speech mixed with white noise at low mixture signal-to-noise ratios.
    Graetzer S; Hopkins C
    J Acoust Soc Am; 2022 Dec; 152(6):3458. PubMed ID: 36586840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic versus electrical coupling of personal frequency modulation (FM) receivers to cochlear implant sound processors.
    Schafer EC; Romine D; Musgrave E; Momin S; Huynh C
    J Am Acad Audiol; 2013; 24(10):927-40. PubMed ID: 24384079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive dynamic range optimization for cochlear implants: a preliminary study.
    James CJ; Blamey PJ; Martin L; Swanson B; Just Y; Macfarlane D
    Ear Hear; 2002 Feb; 23(1 Suppl):49S-58S. PubMed ID: 11883767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive Australian Sentence Test in Noise (AuSTIN).
    Dawson PW; Hersbach AA; Swanson BA
    Ear Hear; 2013 Sep; 34(5):592-600. PubMed ID: 23598772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech Intelligibility in Noise With a Single-Unit Cochlear Implant Audio Processor.
    Wimmer W; Caversaccio M; Kompis M
    Otol Neurotol; 2015 Aug; 36(7):1197-202. PubMed ID: 25894727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.