These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29474415)

  • 1. Flow patterns through vascular graft models with and without cuffs.
    Leong CM; Nackman GB; Wei T
    PLoS One; 2018; 13(2):e0193304. PubMed ID: 29474415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis.
    Hughes PE; How TV
    J Biomech; 1996 Jul; 29(7):855-72. PubMed ID: 8809616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between experimentally measured flow patterns for straight and helical type graft.
    Bernad SI; Bosioc A; Bernad ES; Craina ML
    Biomed Mater Eng; 2014; 24(1):853-60. PubMed ID: 24211972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical type coronary bypass graft performance: Experimental investigations.
    Bernad SI; Bosioc AI; Bernad ES; Craina ML
    Biomed Mater Eng; 2015; 26 Suppl 1():S477-86. PubMed ID: 26406039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of distal graft anastomosis site on retrograde perfusion and flow patterns of native coronary vasculature.
    Guo LR; Steinman DA; Moon BC; Wan WK; Millsap RJ
    Ann Thorac Surg; 2001 Sep; 72(3):782-7. PubMed ID: 11565658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local haemodynamics of arterial bypass graft anastomoses.
    Rowe CS; Carpenter TK; How TV; Harris PL
    Proc Inst Mech Eng H; 1999; 213(5):401-9. PubMed ID: 10581967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts.
    Kissin M; Kansal N; Pappas PJ; DeFouw DO; Durán WN; Hobson RW
    J Vasc Surg; 2000 Jan; 31(1 Pt 1):69-83. PubMed ID: 10642710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division.
    Hughes PE; How TV
    J Biomech Eng; 1995 May; 117(2):224-36. PubMed ID: 7666660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.
    Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T
    Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why Patencies of Femoropopliteal Bypass Grafts with Distal End-to-End Anastomosis are Comparable with End-to-Side Anastomosis.
    Hoedt M; How T; Poyck P; Wittens C
    Ann Thorac Cardiovasc Surg; 2015; 21(2):157-64. PubMed ID: 25641036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding coronary artery bypass transit time flow curves: role of bypass graft compliance.
    Jelenc M; Jelenc B; Klokočovnik T; Lakič N; Geršak B; Kneževic I
    Interact Cardiovasc Thorac Surg; 2014 Feb; 18(2):164-8. PubMed ID: 24174121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut.
    Longest PW; Kleinstreuer C
    Med Eng Phys; 2003 Dec; 25(10):843-58. PubMed ID: 14630472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.