These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29474868)
1. Active site C Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G Free Radic Biol Med; 2018 Apr; 118():59-70. PubMed ID: 29474868 [TBL] [Abstract][Full Text] [Related]
2. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Nelson KJ; Perkins A; Van Swearingen AED; Hartman S; Brereton AE; Parsonage D; Salsbury FR; Karplus PA; Poole LB Antioxid Redox Signal; 2018 Mar; 28(7):521-536. PubMed ID: 28375740 [TBL] [Abstract][Full Text] [Related]
3. Structural properties of the peroxiredoxin AhpC2 from the hyperthermophilic eubacterium Aquifex aeolicus. Liu W; Liu A; Gao H; Wang Q; Wang L; Warkentin E; Rao Z; Michel H; Peng G Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2797-2805. PubMed ID: 30251668 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related]
5. Key roles of the Escherichia coli AhpC C-terminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Dip PV; Kamariah N; Nartey W; Beushausen C; Kostyuchenko VA; Ng TS; Lok SM; Saw WG; Eisenhaber F; Eisenhaber B; Grüber G Biochim Biophys Acta; 2014 Dec; 1837(12):1932-1943. PubMed ID: 25193562 [TBL] [Abstract][Full Text] [Related]
6. Low resolution solution structure of an enzymatic active AhpC10:AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. Kamariah N; Nartey W; Eisenhaber B; Eisenhaber F; Grüber G J Struct Biol; 2016 Jan; 193(1):13-22. PubMed ID: 26584540 [TBL] [Abstract][Full Text] [Related]
7. Transition steps in peroxide reduction and a molecular switch for peroxide robustness of prokaryotic peroxiredoxins. Kamariah N; Sek MF; Eisenhaber B; Eisenhaber F; Grüber G Sci Rep; 2016 Nov; 6():37610. PubMed ID: 27892488 [TBL] [Abstract][Full Text] [Related]
8. The catalytic mechanism of peroxiredoxins. Poole LB Subcell Biochem; 2007; 44():61-81. PubMed ID: 18084890 [TBL] [Abstract][Full Text] [Related]
9. Structure, mechanism and regulation of peroxiredoxins. Wood ZA; Schröder E; Robin Harris J; Poole LB Trends Biochem Sci; 2003 Jan; 28(1):32-40. PubMed ID: 12517450 [TBL] [Abstract][Full Text] [Related]
10. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Perkins A; Nelson KJ; Williams JR; Parsonage D; Poole LB; Karplus PA Biochemistry; 2013 Dec; 52(48):8708-21. PubMed ID: 24175952 [TBL] [Abstract][Full Text] [Related]
11. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Nielsen MH; Kidmose RT; Jenner LB Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):158-67. PubMed ID: 26894543 [TBL] [Abstract][Full Text] [Related]
12. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. Rhee SG; Woo HA Antioxid Redox Signal; 2011 Aug; 15(3):781-94. PubMed ID: 20919930 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. Cao Z; Tavender TJ; Roszak AW; Cogdell RJ; Bulleid NJ J Biol Chem; 2011 Dec; 286(49):42257-42266. PubMed ID: 21994946 [TBL] [Abstract][Full Text] [Related]
14. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Wood ZA; Poole LB; Hantgan RR; Karplus PA Biochemistry; 2002 Apr; 41(17):5493-504. PubMed ID: 11969410 [TBL] [Abstract][Full Text] [Related]
15. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Hall A; Nelson K; Poole LB; Karplus PA Antioxid Redox Signal; 2011 Aug; 15(3):795-815. PubMed ID: 20969484 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. Choi J; Choi S; Choi J; Cha MK; Kim IH; Shin W J Biol Chem; 2003 Dec; 278(49):49478-86. PubMed ID: 14506251 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanism of the Escherichia coli AhpC in the function of a chaperone under heat-shock conditions. Kamariah N; Eisenhaber B; Eisenhaber F; Grüber G Sci Rep; 2018 Sep; 8(1):14151. PubMed ID: 30237544 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. Mizohata E; Sakai H; Fusatomi E; Terada T; Murayama K; Shirouzu M; Yokoyama S J Mol Biol; 2005 Nov; 354(2):317-29. PubMed ID: 16214169 [TBL] [Abstract][Full Text] [Related]
19. Active-site plasticity revealed in the asymmetric dimer of AnPrx6 the 1-Cys peroxiredoxin and molecular chaperone from Anabaena sp. PCC 7210. Mishra Y; Hall M; Locmelis R; Nam K; Söderberg CAG; Storm P; Chaurasia N; Rai LC; Jansson S; Schröder WP; Sauer UH Sci Rep; 2017 Dec; 7(1):17151. PubMed ID: 29215017 [TBL] [Abstract][Full Text] [Related]