These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 29475)
21. Investigations on outbreaks of African horse sickness in the surveillance zone in South Africa. Venter GJ; Koekemoer JJ; Paweska JT Rev Sci Tech; 2006 Dec; 25(3):1097-109. PubMed ID: 17361773 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of enemas for exposing Aedes aegypti to suspensions of dengue-2 virus. Putnam JL; Scott TW J Am Mosq Control Assoc; 1995 Sep; 11(3):369-71. PubMed ID: 8551311 [TBL] [Abstract][Full Text] [Related]
23. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Mourya DT; Gokhale ; Basu A; Barde PV; Sapkal GN; Padbidri VS; Gore MM Acta Virol; 2001 Apr; 45(2):67-71. PubMed ID: 11719984 [TBL] [Abstract][Full Text] [Related]
24. Preparation of recombinant African horse sickness virus VP7 antigen via a simple method and validation of a VP7-based indirect ELISA for the detection of group-specific IgG antibodies in horse sera. Maree S; Paweska JT J Virol Methods; 2005 Apr; 125(1):55-65. PubMed ID: 15737417 [TBL] [Abstract][Full Text] [Related]
25. Infection of Israeli culicoides with African horse sickness, blue tongue and akabane viruses. Mellor PS; Jennings DM; Braverman Y; Boorman J Acta Virol; 1981 Nov; 25(6):401-7. PubMed ID: 6120643 [TBL] [Abstract][Full Text] [Related]
26. Protein synthesized by dengue infected Aedes aegypti and Aedes albopictus. Rohani A; Yunus W; Zamree I; Lee HL Trop Biomed; 2005 Dec; 22(2):233-42. PubMed ID: 16883293 [TBL] [Abstract][Full Text] [Related]
27. Diagnosis and molecular epidemiology of the African horse sickness virus by the polymerase chain reaction and restriction patterns. Zientara S; Sailleau C; Moulay S; Plateau E; Crucière C Vet Res; 1993; 24(5):385-95. PubMed ID: 8260960 [TBL] [Abstract][Full Text] [Related]
28. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). Thavara U; Tawatsin A; Pengsakul T; Bhakdeenuan P; Chanama S; Anantapreecha S; Molito C; Chompoosri J; Thammapalo S; Sawanpanyalert P; Siriyasatien P Southeast Asian J Trop Med Public Health; 2009 Sep; 40(5):951-62. PubMed ID: 19842379 [TBL] [Abstract][Full Text] [Related]
29. African horse sickness in naturally infected, immunised horses. Weyer CT; Quan M; Joone C; Lourens CW; MacLachlan NJ; Guthrie AJ Equine Vet J; 2013 Jan; 45(1):117-9. PubMed ID: 22612775 [TBL] [Abstract][Full Text] [Related]
30. Susceptibility of four species of mosquitoes to Chandipura virus and its detection by immunofluorescence. Ilkal MA; Goverdhan MK; Shetty PS; Tupe CD; Mavale MS; Dhanda V Acta Virol; 1991 Jan; 35(1):27-32. PubMed ID: 1683113 [TBL] [Abstract][Full Text] [Related]
31. Diagnostic accuracy of a duplex real-time reverse transcription quantitative PCR assay for detection of African horse sickness virus. Guthrie AJ; Maclachlan NJ; Joone C; Lourens CW; Weyer CT; Quan M; Monyai MS; Gardner IA J Virol Methods; 2013 Apr; 189(1):30-5. PubMed ID: 23291102 [TBL] [Abstract][Full Text] [Related]
32. Novel gel-based and real-time PCR assays for the improved detection of African horse sickness virus. Rodriguez-Sanchez B; Fernandez-Pinero J; Sailleau C; Zientara S; Belak S; Arias M; Sanchez-Vizcaino JM J Virol Methods; 2008 Jul; 151(1):87-94. PubMed ID: 18501973 [TBL] [Abstract][Full Text] [Related]
33. Transmission of hog hog cholera virus by mosquitoes. Stewart WC; Carbrey EA; Jenney EW; Kresse JI; Snyder ML; Wessman SJ Am J Vet Res; 1975 May; 36(5):611-4. PubMed ID: 237444 [TBL] [Abstract][Full Text] [Related]
34. Rapid and sensitive detection of African horse sickness virus by real-time PCR. Fernández-Pinero J; Fernández-Pacheco P; Rodríguez B; Sotelo E; Robles A; Arias M; Sánchez-Vizcaíno JM Res Vet Sci; 2009 Apr; 86(2):353-8. PubMed ID: 18782637 [TBL] [Abstract][Full Text] [Related]
35. Role of Culex pipiens L. in recovering latent African-horse-sickness virus from dogs. el-Husseini MM; Salama SA; Abdallah SK; Abou Bakr HE; Hassanein MM J Egypt Soc Parasitol; 1986 Jun; 16(1):249-58. PubMed ID: 3722893 [No Abstract] [Full Text] [Related]
36. Study of the virulence of serotypes 4 and 9 of African horse sickness virus in IFNAR(-/-), Balb/C and 129 Sv/Ev mice. de la Grandière MA; Dal Pozzo F; Tignon M; Zonta W; Thiry D; Mauroy A; Mathijs É; Caij AB; Saegerman C; Thiry É Vet Microbiol; 2014 Dec; 174(3-4):322-332. PubMed ID: 25458420 [TBL] [Abstract][Full Text] [Related]
37. Adaptive strategies of African horse sickness virus to facilitate vector transmission. Wilson A; Mellor PS; Szmaragd C; Mertens PP Vet Res; 2009; 40(2):16. PubMed ID: 19094921 [TBL] [Abstract][Full Text] [Related]
38. Comparative ultrastructural characterization of African horse sickness virus-infected mammalian and insect cells reveals a novel potential virus release mechanism from insect cells. Venter E; van der Merwe CF; Buys AV; Huismans H; van Staden V J Gen Virol; 2014 Mar; 95(Pt 3):642-651. PubMed ID: 24347494 [TBL] [Abstract][Full Text] [Related]
40. Tissue and cell tropism of African horse sickness virus demonstrated by immunoperoxidase labeling in natural and experimental infection in horses in South Africa. Clift SJ; Penrith ML Vet Pathol; 2010 Jul; 47(4):690-7. PubMed ID: 20484177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]