These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29475347)

  • 1. Water metamaterial for ultra-broadband and wide-angle absorption.
    Xie J; Zhu W; Rukhlenko ID; Xiao F; He C; Geng J; Liang X; Jin R; Premaratne M
    Opt Express; 2018 Feb; 26(4):5052-5059. PubMed ID: 29475347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultrathin, Triple-Band Metamaterial Absorber with Wide-Incident-Angle Stability for Conformal Applications at X and Ku Frequency Band.
    Deng G; Lv K; Sun H; Yang J; Yin Z; Li Y; Chi B; Li X
    Nanoscale Res Lett; 2020 Nov; 15(1):217. PubMed ID: 33210185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile design of an ultra-thin broadband metamaterial absorber for C-band applications.
    Hoa NTQ; Tuan TS; Hieu LT; Giang BL
    Sci Rep; 2019 Jan; 9(1):468. PubMed ID: 30679476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption.
    Nguyen TT; Lim S
    Sci Rep; 2018 Apr; 8(1):6633. PubMed ID: 29700385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion.
    Qi B; Chen W; Niu T; Mei Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum.
    Huang Y; Liu L; Pu M; Li X; Ma X; Luo X
    Nanoscale; 2018 May; 10(17):8298-8303. PubMed ID: 29687812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer.
    Ren J; Yin JY
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances.
    Mehrabi M; Rajabalipanah H; Abdolali A; Tayarani M
    Appl Opt; 2018 May; 57(14):3693-3703. PubMed ID: 29791329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency.
    Khuyen BX; Tung BS; Kim YJ; Hwang JS; Kim KW; Rhee JY; Lam VD; Kim YH; Lee Y
    Sci Rep; 2018 Aug; 8(1):11632. PubMed ID: 30072795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design.
    Min P; Song Z; Yang L; Ralchenko VG; Zhu J
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting.
    Sun C; Liu H; Yang B; Zhang K; Zhang B; Wu X
    Phys Chem Chem Phys; 2022 Dec; 25(1):806-812. PubMed ID: 36510760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency broadband multilayer microwave metamaterial absorber based on resistive frequency selective surfaces.
    Lan HW; Li ZM; Weng XL; Qi L; Li K; Zhou ZR; Wu XY; Bi M
    Appl Opt; 2023 Feb; 62(4):1096-1102. PubMed ID: 36821169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.