These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29475735)
1. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Egea LG; Jiménez-Ramos R; Vergara JJ; Hernández I; Brun FG Mar Pollut Bull; 2018 Sep; 134():14-26. PubMed ID: 29475735 [TBL] [Abstract][Full Text] [Related]
2. The negative effects of short-term extreme thermal events on the seagrass Posidonia oceanica are exacerbated by ammonium additions. Ontoria Y; Cuesta-Gracia A; Ruiz JM; Romero J; Pérez M PLoS One; 2019; 14(9):e0222798. PubMed ID: 31536606 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. Ontoria Y; Gonzalez-Guedes E; Sanmartí N; Bernardeau-Esteller J; Ruiz JM; Romero J; Pérez M Mar Environ Res; 2019 Mar; 145():27-38. PubMed ID: 30795849 [TBL] [Abstract][Full Text] [Related]
4. Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: Direct and indirect effects. Rodríguez A; Moreno-Borges S; Brito A Mar Environ Res; 2022 Apr; 176():105603. PubMed ID: 35325757 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant response to heat stress in seagrasses. A gene expression study. Tutar O; Marín-Guirao L; Ruiz JM; Procaccini G Mar Environ Res; 2017 Dec; 132():94-102. PubMed ID: 29126631 [TBL] [Abstract][Full Text] [Related]
6. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Ruocco M; Musacchia F; Olivé I; Costa MM; Barrote I; Santos R; Sanges R; Procaccini G; Silva J Mol Ecol; 2017 Aug; 26(16):4241-4259. PubMed ID: 28614601 [TBL] [Abstract][Full Text] [Related]
7. Eutrophication overrides warming as a stressor for a temperate African seagrass (Zostera capensis). Mvungi EF; Pillay D PLoS One; 2019; 14(4):e0215129. PubMed ID: 30973955 [TBL] [Abstract][Full Text] [Related]
8. Carbon economy of Mediterranean seagrasses in response to thermal stress. Marín-Guirao L; Bernardeau-Esteller J; García-Muñoz R; Ramos A; Ontoria Y; Romero J; Pérez M; Ruiz JM; Procaccini G Mar Pollut Bull; 2018 Oct; 135():617-629. PubMed ID: 30301080 [TBL] [Abstract][Full Text] [Related]
9. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
10. Nutrient enrichment and herbivory alter carbon balance in temperate seagrass communities. Jiménez-Ramos R; Brun FG; Vergara JJ; Hernández I; Pérez-Lloréns JL; Egea LG Mar Pollut Bull; 2024 Sep; 206():116784. PubMed ID: 39083908 [TBL] [Abstract][Full Text] [Related]
11. Nutrition of the seagrass Cymodocea nodosa: Pulses of ammonium but not of phosphate are crucial to sustain the species growth. Alexandre A; Santos R Mar Environ Res; 2020 Jun; 158():104954. PubMed ID: 32217301 [TBL] [Abstract][Full Text] [Related]
12. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Chefaoui RM; Duarte CM; Serrão EA Glob Chang Biol; 2018 Oct; 24(10):4919-4928. PubMed ID: 30006980 [TBL] [Abstract][Full Text] [Related]
13. Limited trait responses of a tropical seagrass to the combination of increasing pCO2 and warming. Viana IG; Artika SR; Moreira-Saporiti A; Teichberg M J Exp Bot; 2023 Jan; 74(1):472-488. PubMed ID: 36272111 [TBL] [Abstract][Full Text] [Related]
14. Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Beca-Carretero P; Guihéneuf F; Marín-Guirao L; Bernardeau-Esteller J; García-Muñoz R; Stengel DB; Ruiz JM Mar Pollut Bull; 2018 Sep; 134():27-37. PubMed ID: 29331284 [TBL] [Abstract][Full Text] [Related]
15. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
16. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Marín-Guirao L; Ruiz JM; Dattolo E; Garcia-Munoz R; Procaccini G Sci Rep; 2016 Jun; 6():28615. PubMed ID: 27345831 [TBL] [Abstract][Full Text] [Related]
17. Effect of In Situ short-term temperature increase on carbon metabolism and dissolved organic carbon (DOC) fluxes in a community dominated by the seagrass Cymodocea nodosa. Egea LG; Jiménez-Ramos R; Hernández I; Brun FG PLoS One; 2019; 14(1):e0210386. PubMed ID: 30640926 [TBL] [Abstract][Full Text] [Related]
18. Global and local disturbances interact to modify seagrass palatability. Jiménez-Ramos R; Egea LG; Ortega MJ; Hernández I; Vergara JJ; Brun FG PLoS One; 2017; 12(8):e0183256. PubMed ID: 28813506 [TBL] [Abstract][Full Text] [Related]
19. Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. Apostolaki ET; Holmer M; Santinelli V; Karakassis I Mar Environ Res; 2018 Mar; 134():85-95. PubMed ID: 29331242 [TBL] [Abstract][Full Text] [Related]
20. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]